看護師の視覚を用いた観察に基づく臨床判断の構造

林 静子

2015
The structure of clinical judgment making based on nurse’s visual observation

Introduction

Observation is an extremely important nursing action. Nurses are, at all times, expected to have a practical ability to quickly understand patients’ conditions through observation to provide necessary support to patients.

Humankind uses five senses to make observations. The sense of sight plays an important role in observation. From this perspective, we aimed to show objectively how nurses make visual observations of patients by using an eye tracking system, Talk Eye II. In addition, we intended to determine what nurses think through visual observations.

Objectives

This study aimed to demonstrate the structure of clinical decision making of nurses based on the visual observation of hospital patients’ rooms.

1. We aimed to demonstrate the characteristics of eye movements of nurses while they observed the simulated patient room.
2. We aimed to demonstrate the thought process of nurses based on their sight during observation of the simulated patient room.
3. We aimed to demonstrate the influence on the eye movement upon the thought process by nurses during observation of the simulated patient room.

Methods

The subjects were 33 nurses working in hospital. The investigation procedure was as follows: 1) The subjects were provided with information on a simulated patient: an 85-year-old female inpatient with pneumonia. 2) Four consecutive pictures of a simulated patient room with a simulated patient lying on the bed were shown to the subjects to make it easier for the subjects to simulate the situation in which they visit the simulated patient room and observe the simulated patient. 3) We used Talk Eye II to measure the eye movements of the subjects during the observation of the pictures. 4) Following the observation of the pictures, we asked the subjects to review the content of thought during the observation by checking the track of the line of sight measured
by Talk Eye II and provide verbal reports.

(1) We used eye-tracking data measured by using Talk Eye II to compare the characteristics of eye movements of the nurses according to years of clinical experience. “Total gazing time,” “gazing time by area,” and “presence or absence of gazing” were used as indicators.

(2) We recorded the verbal data, reported by the subjects who reviewed the content of thought during observation of the picture by looking at the track of the line of sight measured by Talk Eye II, on a digital voice recorder to audio-type them. Protocol analysis was used to analyze the verbal data obtained.

(3) We analyzed the proportion of the visual observation during the observation of the simulated patient room reflected in the verbal data.

Results

1. No significant difference of the indicators was found according to years of clinical experience. However, many nurses gazed at the same areas in the picture and they gazed at some specific areas longer than others.

2. As a result, observation items were classified into 58 groups. Based on the thought processes such as “check and initial grasp,” “reasoning,” and “choice of nursing intervention,” four thinking types were identified: “check and initial grasp type,” “reasoning type,” “choice of nursing intervention type,” and “intuitive choice of nursing intervention type.”

 The majority of the nurse with experience less than one year belonged to the “check and initial grasp type” whereas, nurses with experience more than one year belonged to the “reasoning type” or “choice of nursing intervention type”. This means that the thoughts of nurses with longer years of experience are more profound than those of nurses with shorter experience.

 In addition, the content of reasoning varied according to observation categories; for example, nurses thought about risk regarding the prevention of tumble or fall, and pain of patients regarding the maintenance of a comfortable body position.
3. Overall, 50.4 to 68.9% of visual observation was reflected in the verbal data. Visual observation was reflected in the verbal data less in nurses with 10 years or more of clinical experience than in those with less than 10 years of clinical experience.

Discussion

The results of the three analyses showed the characteristics of eye movements of nurses during the observation of the simulated patient room. Nurses were likely to use covert attention and peripheral vision function to determine the priority order of areas that required observation. In addition, reasoning for what nurses gazed at during the observation of the simulated patient room had characteristics. The years of clinical experience may contribute to their thinking types.

The proportion of visual observation of nurses reflected in the verbal data showed that nurses with experience less than one year observed the simulated patient using sight to check and understand the situation. On the other hand, nurses with 10 years or more of experience were likely to use peripheral vision function in observation, reflecting it in their thoughts.

Visual observation may cause connivance, oversight, and wrong assumption. To make an appropriate clinical decision, it is important to conduct visual observation and then reflect the results of the observation in thoughts. The results of this study will be used to examine educational methods through which nurses will be able to describe objectively what they observe by sight and reflect it in an appropriate clinical decision.

Key Words

Eye movement, Clinical experiences, Protocol analysis, Gaze, Verbal report.
第1章 序論
1.1 研究の動機と背景 .. 1
1.2 文献検討 .. 5
 1.2.1 医療安全の視点からの観察の現状・課題 5
 1.2.2 看護師の臨床判断 .. 6
 1.2.2.1 臨床判断に関する研究の現状 6
 1.2.2.2 臨床判断を分析する方法 7
 1.2.2.3 思考過程の調査方法:プロトコル分析 7
 1.2.3 眼球運動計測装置を用いた視覚の測定 8
 1.2.3.1 医療現場における視覚を用いた観察 8
 1.2.3.2 臨床経験年数の違いにおける視覚を用いた観察 9
 1.2.3.3 眼球運動計測装置を用いた看護教育への応用 10
 1.2.4 臨床現場における看護師教育の現状と課題 11
 1.2.5 文献検討まとめ .. 12
1.3 研究目的 .. 13
1.4 研究の意義 ... 13
1.5 本研究の構成 ... 14

第2章 研究方法
2.1 研究デザイン ... 15
 2.1.1 研究の枠組み .. 15
 2.1.2 用語の定義 ... 16
2.2 研究対象 ... 17
 2.2.1 対象者のリクルート方法 ... 17
2.3 調査協力施設・調査場所 .. 17
2.4 調査期間 ... 18
2.5 調査方法 ... 18
 2.5.1 実験手順 ... 18
2.6 患者設定 .. 19
 2.6.1 模擬患者情報 .. 19
第3章 結果

3.1 対象者の基本属性

3.2 眼球運動

3.2.1 総注視時間

3.2.2 領域別注視時間

3.2.3 領域における注視人数

3.3 思考内容

3.3.1 観察カテゴリ別の発話単位数と全発話単位数に占める割合

3.3.2 観察カテゴリの思考類型別，発話人数・発話単位数の割合

3.3.3 思考過程の類型

3.4 眼球運動データと思考内容との一致

3.4.1 注視箇所と発話単位の一致

3.4.2 注視一箇所あたりの発話単位数
第4章 考察

4.1 眼球運動 ... 70
 4.1.1 技術取得レベルによる注視時間の傾向 70
 4.1.2 領域における注視人数 ... 71

4.2 思考内容 ... 73
 4.2.1 模擬患者・模擬病室画像観察時の観察カテゴリー・観察内容に関する発話単位 73
 4.2.2 臨床経験年数の違いにおける模擬患者・模擬病室画像観察時の思考類型 75
 4.2.3 模擬患者・模擬病室画像観察時における観察カテゴリー別の推論の特徴 76
 4.2.4 観察カテゴリー別、【ケア決定型】を示す観察内容の特徴 78
 4.2.5 発話思考法によって得られる思考内容とプロトコル分析の課題 79

4.3 眼球運動データと思考内容との一致 80
 4.3.1 注視している領域が反映されている発話単位 80
 4.3.2 看護教育への応用 ... 81

第5章 結論

5.1 総括 ... 83

5.2 本研究の限界・今後の課題 .. 84

5.3 結論 ... 85

謝辞 ... 85

引用文献
第1章 序論

1.1 研究の動機，背景

看護において観察は極めて重要な看護行為のひとつであり，医療の高度化・患者の高齢化，入院期間の短縮に伴い看護師は患者の状態を素早く的確に観察し，患者に必要な援助方法を決定し実施する臨床実践能力が求められている。

看護師は観察の目的である患者のケアに役立つ情報を得るため（川島，2006），バイタルサインや，患者の表情・行動，周囲の環境などを五感を用いて観察している。特に熟練看護師の場合，日々の臨床場面で病室に入った時に瞬時に，何か変だと感じるような直感を働かせた観察を行い，一目で状況を把握している場面も見られる（Benner et al., 2009）。観察は一般的に五感によって行われるが，五感から得られる情報のうち視覚は83%を占めており（教育機器編集委員会，1972），観察には欠かせないものであるといえる。眼球を通して伝えられる視覚情報は大脳皮質視覚野に伝達される。アカゲザルの場合，大脳新皮質の総面積のうち約55%が視覚情報処理を行う視覚関連領野で占められており（Felleman & Van Essen, 1991），人を含め霊長類において視覚機能は重要な役割を果たしているといえる。

しかし，視覚による観察は意図的な注意を向けないために，視覚的には十分認知可能と思われる物理的刺激を検出できない“非注意による見落とし”現象（横澤，大谷，2003）や，見て知っているながら特に問題にしないでそのままにする“見過ごし”（広辞苑 第6版，2008），軽視のよう視覚による錯覚によって実際とは異なる知覚を得て思い違いや勘違いといった誤認識が生じる可能性がある。

日本医療機能評価機構における医療事故情報収集等事業 2012 年年報では，医療事故事例とヒヤリ・ハット事例の発生要因として，当事者の行動にかかわる「確認を怠った」「観察を怠った」「判断を怠った」が上位を占めている。医療事故やヒヤリ・ハットのような危険な状況が引き起こされるのは個別の特性によるものと考えず，ヒューマンエラーとしてとらえている。ヒューマンエラーは生理学的特性，心理学的特性，認知的特性など人間の本来持っている特性と，人間を取り巻く機械，手順書，チーム，教育システムなどの環境がうまく合致していなかったために引き起こされるものと考えられている（河野, 2009）。

医療事故事例の概要として看護師の業務である「療養上の世話」が最も多く，ヒヤリ・ハット事
例の概要においても「薬剤」関連や「療養上の世話」の項目が多い。2006年に改正された医療法により設けられた看護職の業務独占と名称独占規定に伴い看護師は専門職としての役割法により保障されると同時に看護業務を行うにあたり、危険防止のために必要とされる注意義務が要求されることとなる。つまり、看護師は常に患者に危険がないように注意し、患者が入院し治療を受ける療養の場の安全・安楽を保障する法的義務を負っている。

看護師は危険を防止するだけでなく、患者が安心して療養生活を送ることができるように、患者が必要としている援助に気づき適切に援助を実施することが必要である。患者の状態を把握し援助を実施する際、熟練した看護師はパターン認識、類似認識、常識的解釈、熟練した実践的な知識、重要点を感知する能力、そして熟慮された合理性の能力を持ち合わせている（Benner & Tannar, 1987）。また、中堅看護師や熟練看護師ほど手がかりや推論が多く、モニターリングや確認が行われているが、看護学生や新人看護師は手がかりとなる情報が少なく、観察の視点が狭いといった特徴が挙げられている（藤内, 2008）。実際の臨床現場において、看護学生や新人看護師が熟練した看護師と同じ状況を観察していても、違うことを考えていたり、見ている場所が異なっている場合があり、患者が必要としている援助に気づくことができない場合もみられる。経験の浅い未熟な看護師は見落としがちなが、熟練した看護師は見過ごしを先入観に行いがちである（川島, 2006）。見落としがちなが先入観を生じた場合、患者を危険にさらす可能性につながるため、観察力を高めて的確な判断を行い援助の実施につなげることが必要である。

かと考える。

また、眼球運動測定装置を用いた研究は医療安全に特化した場面を扱ったものが多く、視覚による観察を客観的に示すことは医療安全対策の推進につながる可能性が高いといえる。しかし、観察は医療安全対策の推進だけでなく、患者にとって必要な援助を提供するためにも重要である。患者が必要な援助を決定するには患者の生活背景や症状の経過、検査結果等の患者情報から患者の状況を予測しながら患者の観察を行う必要があり、この思考内容を客観的に示す必要があると考える。

しかし、発話思考法のみでは実際に観察を行って考えた思考内容なのか，観察しないで考えた
ことなのか疑問が生じる。この疑問に対して、Rhenius et al. (1990) は視線軌跡・視線が停留する注視点と、プロトコル分析によって得られた思考内容のデータと照合し、視線軌跡・注視点と思考内容に73~98%の一致を確認している。このことから、観察時の思考を振り返るきっかけとして眼球運動計測装置を用いた視線軌跡を使用することによって、実際に観察を行っていた時の思考内容を語ることができるのではないかと考える。

日本看護協会倫理綱領条文8項「看護職は常に個人の責任として継続学習による能力の維持、開発に努める」ことが責務であるように、看護職者は継続的に学習していく必要がある。看護師が勤務する各施設では、新人看護師に対しては2010年4月1日より新人看護職員の臨床研修等の努力義務化が始まり、新人看護職員研修に関するガイドラインに沿って教育が行われ、2012年4月に「継続教育の基準 ver. 2」が日本看護協会から示され、継続教育に活用されている。新人看護師の研修の中でも、自ら受け持った患者に必要な看護を考え、判断する能力を養えるような指導が必要であるとされており、各施設や各病棟の特徴に応じて職場内教育（on the job training; 以下OJT）と集合研修（off the job training; 以下Off-JT）を組み合わせて実施されている。しかし、実際のベッドサイドにおいて行われるOJTの内容は各部署の実施指導者などに任されており、課題として部署ごとの特徴に応じたOJTプログラムの強化、部署ごとによる看護技術の経験度の違い（坂本、2011）などが挙げられている。

また、実際の臨床現場では同じ状況を観察していても見ている場所が異なったり、見落としや見過ごしが生じる場合がある。しかし、OJTでは視覚を用いた観察内容を客観的に示すことが難しく、さらに、観察したことから考えられることがずれ、患者に危険が生じたり必要な援助を実施することができない可能性が考えられる。

視覚を用いた観察を客観的に示し教育する方法として、模彷患者に依頼しシミュレーション場面を観察し眼球運動計測装置で示されるデータを用いてフィードバックを行ったり （Elizabeth et al., 2007-2009; Yan, 2010）、新潟大学医歯学総合病院看護部で“気づく”を伸ばす臨床キャリア開発として、臨床実践対応力セルフモニターリングプログラム（平成21年度文部科学省大学改革推進事業「看護師の人材養成システムの確立」）が検討され、眼球運動計測装置を用いて視覚を客観的に示している。しかし、観察したことから患者に必要な看護をどのように考え判断したのか、観察の意図や根拠については不明である。観察を教育するには、ただ見るだけでなく見たことからどのように考え、そのように判断するのかといった思考力を高める必要がある。観察意図についてインタビューから、新人看護師が「なんとなく見ていた」状況や、観察意図と視覚情報が一致していないものがあること（西方ら、2012）が明らかにされているが、視覚を用いた観察と
観察の意図を別々に調査しているため、視覚を用いた観察がどのように臨床判断につながっていくかは明らかにされていない。そこで、観察時の注視箇所と思考内容を照合し一致を確認することによって、視覚による観察がどの程度思考内容に反映されているかを明らかにすることができるのではないかと考える。

1.2 文献検討

1) 医療安全の視点からの観察の現状・課題、2) 看護師の臨床判断、3) 眼球運動計測装置を用いた視覚の測定、4) 臨床現場における教育の現状と課題について検討を行った。

1) 医療安全の視点からの観察の現状・課題は、厚生労働省のホームページ(http://www.mhlw.go.jp/)にある健康・医療に関する政策の医療安全対策を確認した。さらに医療安全対策の施策に関する医療事故情報収集事業（ヒヤリハット事例の収集事業）を行っている、第三者機関である公益財団法人医療機能評価機構のホームページ(http://jcqhc.or.jp/)から、医療事項情報収集等事業2012年年報の情報を確認した。

2) 看護師の臨床判断、3) 眼球運動計測装置を用いた視覚、4) 臨床現場における教育の現状と課題について、医中誌Web ver.5、JDreamer、PubMedを用いて2013年6月までのキーワード検索と、方法論等について書かれた書籍の情報から文献検討を行った。

1.2.1 医療安全の視点からの観察の現状・課題

医療の質の向上と安全の確保として医療機関内では医療安全管理体制の整備が義務付けられ、平成18年の医療法改正に伴い医療安全管理体制の整備を行う医療機関の拡大等を図った。また、平成18年4月の診療報酬改正では、医療安全対策加算が新設され、医療機関において専従の医療安全管理管理者を配置すること等が要件として挙げられた。

日本医療機能評価機構における医療事故情報収集等事業2012年年報の1年間の報告において、医療事故事例30,823件の概要では「療養上の世話」が14,129件（41.8%）と最も多く、ヒヤリ・ハット事例2,535件の概要では「薬剤」の14,129件（45.8%）について「療養上の世話」が5,685件（18.4%）と多く見られている。医療事故事例の発生要因（複数回答）は6,548件中、「確認を怠った」777件（11.9%）、「観察を怠った」694件（10.6%）、「判断を誤った」685件（10.5%）であった。ヒヤリ・ハット事例の発生要因（複数回答）は78,898件中、「確認を怠った」20,237件（25.6%）、「観察を怠った」7,110件（9.0%）、「判断を誤った」6,079件（7.7%）と当事者の行動に関わる要因が上位を占めている。また、消費者庁と独立行政法人国民生活センターが連携して公開している
事故報告として見落としが大きな原因となるような，ベッド柵の間に頭が挟まり死亡したケースやベッドの頭側を挙上するときに上下肢がベッド柵の間に挟まり骨折するケースなどが挙げられている。

1.2.2 看護師の臨床判断

看護師の臨床判断について，「臨床判断」「臨床推論」「プロトコル分析」「clinical judgement」「clinical reasoning」「protocol analysis」をキーワードとして文献検索を行った。プロトコル分析については研究論文以外に方法論について書かれた書籍からも検討を行った。

1.2.2.1 臨床判断に関する研究の現状

臨床判断の構成要素や特徴について，① 臨床判断のプロセスやパターン，② 看護行為に結びつく臨床判断の内容，③ 治験判断の根拠，④ 临時判断に及ぼす影響の4つが示されている（藤内ら, 2005: 飯塚ら, 2010）。

Tanner（2006）は臨床判断に関する文献検討から，1）臨床判断は客観的データよりも看護師の目の前にある状況に影響され，2）患者と看護師との関係性が影響し，3）状況にある臨床場面の文化に影響，4）様々な推論パターンを組み合わせ，5）実践は臨床判断の背景となる臨床的推論における臨床の知を活用し，発展させることが重要であることを明らかにした。さらに，「気
づき」「解釈・理解」「反応」「内省」の4つの側面が含まれる思考過程を新たな臨床判断モデルとして提示した。思考過程に含まれる「気づき」は、看護師がこれまでの経験や知識から患者の反応や状況を予想する機能を働かせ、目の前の状況に気づき確認し状況把握を行う過程、「解釈・理解」はデータの意味を解釈し適切な対応を決定することや、看護師が持っているパターン認識と照らし合わせ直感的かつ暗黙的に推論を働かせる過程、「反応」は「解釈・理解」された結果として、介入方法を決定し実施する臨床推論の過程、「内省」は介入が適切であったか、患者を知ることができたかを自身で評価をする過程として報告されている。

臨床的推論は特定の患者や家族について推移を見通すこと、状況の変化について推察することが必要とされる。推移を見通すこととは、常に変化する終わりのない臨床状況における実践的推論のことであるといえる（Benner et al. 1999, p.15）。また「臨床的論証」として、患者や家族の脈絡と懸念などを考慮に入れてから臨床状況の変化に従って論証を行う能力を指し、臨床論証を行うとき、看護師は患者の経過と過去を把握することを定義している（Benner et al., 2010）。つまり、臨床現場で看護師は臨床推論を繰り返し、臨床判断を行っているといえる。

1.2.2.2 臨床判断を分析する方法

看護師の臨床判断を分析する方法として、様々な臨床場面の中から、転倒防止策を決定するまで（丸岡ら, 2005）や、ICUにおいて異常を察知した時の判断（岩田ら, 2005）、周手術期患者に対する臨床判断（飯塚ら, 2011）、助産師の分娩期における判断の手がかり（渡辺ら, 2010）、体位変換の実施時の意思決定（三好ら, 2003）、新人看護師の健康歴聴取時の情報収集方法（藤内ら, 2008）、褥瘡予防に関するケア計画の決定（Funkesson et al., 2007）、クリティカルケアを実施する時（Corcoran et al., 1999）、電子カルテを操作して看護過程を進めていく時（古庄ら, 2008）など特定の場面に焦点を当て、半構成的面接やエスノグラフィ、プロトコル分析など質的に面接を行い、臨床判断の構成要素や特徴、思考過程の特徴を分析している。

1.2.2.3 思考過程の調査方法：プロトコル分析

プロトコル分析を用いて医師が手術を行うときやソフトウェア設計の開発、音楽家やスポーツ、バレエ、チェスなど様々な状況における専門知識と専門家のパフォーマンスにおける思考過程を分析するためにハンドブックを提示している（Ericsson, 2006）。プロトコル分析を用いて分析した結果、一般的な専門家だけでなく看護師においても看護の専門性として優れたパフォーマンスのアプローチを識別することができると述べている（Ericsson & Whyte, 2007；Whyte et al.,
しかし、発話思考法のみでは実際に観察を行って考えた思考内容なのか、考えていないことを報告しているのではないかという疑問が生じる。この疑問に対して、Rhenius et al. (1990)は視線の方向とプロトコル分析によって得られた思考過程のデータと比較し、プロトコルと視線の方向に73~98%の一致があったことを確認している。このように、発話思考のみの調査ではなく、思考内容を反映するような行動をビデオ撮影したり、眼球運動計測による視線軌跡を計測するなどデータを組み合わせて検討する必要がある。

1.2.3 眼球運動計測装置を用いた視覚の測定

眼球運動計測装置を用いた視覚の測定について、「眼球運動計測」「アイカメラ」「眼球運動」「視覚」「eye movement」「eye tracking」「gaze」「観察」をキーワードとして文献検討を行った。眼球運動計測は測定中にリアルタイムで視線軌跡を表示することができ、測定後直ちに注視点分布と視線軌跡の表示が可能である。また、小型で対象者に拘束感が少ない測定が可能である。

1.2.3.1 医療現場における視覚を用いた観察

医療の分野では、放射線科医がレントゲン画像を見て診断する時の視線（Kundrl et al., 2007; Markonis et al., 2012）や、手術室のシミュレーション状況における麻酔科医の視線（Schulz-Stubner et al., 2002; Schulz et al., 2011a, 2011b）、外科医の手術中の視線（Khan et al., 2012; Atkins et al., 2012）の特徴や経験による違いを明らかにしている。

看護の場面では、実際の病院内の病室内での看護師の視線の特徴（村瀬ら, 1989）や、擬似病室をイラストにしたもの（河合, 2000）、擬似病室を撮影し画像をモニターに映し出したもの（西方ら, 2012）など、観察する場面の条件を一定化し観察状況の調査が行われている。しかし、実際の臨床場面では同じ療養環境であっても患者の年齢・性別、疾患や病状、その時の状況など、観察内容に影響を与えるような要因が含まれている。そのため、ただ療養環境を提示するだけでは観察の目的が抽象的になり、観察内容にばらつきがみられる可能性があり、調査の実施では研究の目的に合わせて観察の状況や患者の設定を行う必要がある。
看護の状況を設定したものでは、血圧測定の場面を設定し血圧測定を動作ごとに分け、注視領域を決め、動作ごとの観察領域の注視時間を確認したものや（村本ら、1992；國澤ら、1994）、薬剤の指示書の確認（松谷ら、2012）、輸液ボンプのアラーム対応（Kataoka et al., 2008）がある。これらは、手順が一定しており観察範囲が固定できる。しかし、これは限られた技術（状況）であるため、複雑な患者の状況を観察するためには共通するものを検討し、研究目的に応じた状況設定を決定する必要がある。

観察の目的を明確にした研究では、危険因子を含んだ病床をスクリーンに提示し、危険な場面を提示し危険だと思う箇所を探索的に観察している（江上ら、2012）ものがある。これは、危険因子に注目しているため、危険だと思う範囲をどのように観察しているかを明確にできるが、予測的に危険を知り観察している部位や、患者の表情から苦痛の有無を確認するなど安楽な視点からの観察を抽出することができない。また、患者に必要な援助を考えるための観察などがどのように行われているかは明らかにされていない。

1.2.3.2 臨床経験年数の違いにおける視覚を用いた観察

臨床経験年数と視覚情報の取り込みの違いに関する研究では、看護系大学の2年次学生と熟練看護師・看護教員を対象に、血圧測定時の視線の停留時間、注視部位、サッケード運動を比較したものがある（村本ら、1992；國澤ら、1994）。村本ら（1992）は、看護系大学生2年次2名と熟練看護師2名を対象に比較を行ったが、血圧測定の動作において加圧し減圧する行動では、どちらも視線の停留時間は長く差は見られない。しかし、ステートをあてる動作では、学生の停留時間が長く、熟練した看護師サッケード運動の出現確率が高く周辺情報を取り込んでいたと考えられる。國澤ら（1994）は、看護系大学生2年次2名と看護師・看護教員14名を対象に、血圧測定動作を4つに分け、さらに観察している領域を分け動作毎の観察部位の停留時間の割合を確認した。停留時間の長さやサッケード運動の出現率が高くなることは、村本ら（1992）の結果と同様であったが、熟練看護師と看護教員のステートをあてる動作では視覚情報以外に動脈の触覚を熟知しているため、情報の取り込みが早く判断できていると示している。つまり、血圧測定に関しても熟練看護師の技術が素早く的確に行われていることを示しているといえる。

河合（2000）は、看護系大学生2年次16名と臨床経験5年以上の看護師14名を対象に、イラストに描いた病床環境をモニター画面に提示し、看護をするにあたっての必要事項を観察するという課題を示し、視覚情報の取り込みを計測している。イラストに描いた療養環境は15エリアに分類し、エリアごとの総注視時間と総注視回数を分析したが、差は認められなかった。しかし、
看護師の観察では、注視しているエリアに共通部位が多く意図的・選択的に観察していることを示唆している。危険因子を含んだ場面を画像に示した調査では、江上ら（2012）が看護系大学1~4年次の各学年の学生を対象に、視覚情報と危険の認識を調査している。危険箇所の認識は学年進行に伴い増加し、特に4年次学生ではほかの学年の学生よりも多く確認していた。また、1年次学生では危険箇所エリアを見ているものの危険と認識がない場合が見られた。

看護師の視覚を用いた観察には差が見られない場合が多いものの、経験のある看護師の視覚を用いた観察は予測を含み選択的・意図的・探索的に行うことができ、素早く的確に観察し援助を実施している傾向が示唆されている。しかし、眼球運動の測定データだけではその内容が予測的なものなのか、選択的・意図的・探索的に行われているものと一致しているのかは不明である。さらに、観察したことをどのように認識し判断しているかについても不明である。

視覚を用いた観察と意図について、クリニカルラダーⅠの新人レベルの看護師と・クリニカルラダーⅣレベルの達人レベルの看護師を対象に、視覚を用いた観察と、観察後の面接が行われている。観察している部位によって注視時間に差は見られるが、研究者が意図している重要な部位の注視時間に差は見られなかった。観察内容・意図では、新人看護師群に「なんとなく見ていて」といったはっきりした観察意図がない状況が見られ、ラダーⅠ・Ⅳ群では予測的な観察意図や、危険が起こるかも知れないといった危険予知が行われていた（西方ら，2012）。しかし、予測的・意図的なものを含め観察した内容をどのように推測し、臨床判断を行っているかについては明らかにされていない。

視覚など感覚器から入る刺激の情報処理過程についてLindsay & Norman（1977a）が、「データ駆動型処理」と「概念駆動型処理」の2つの異なるタイプがあることを述べている。「データ駆動型処理」は感覚器に刺激が入ることによって情報処理が始まり、情報の分析や解釈が行われる過程のことを示している。「概念駆動型処理」は知識、経験、記憶、文脈からの情報等から、期待したり仮説を立てたりすることから始まり、確認するために感覚器から入った刺激を解釈し理解する過程を示している。

1.2.3.3 眼球運動計測装置を用いた看護教育への応用

視覚を用いた観察を客観的に示すことができる眼球運動計測装置を活用した看護教育については、模擬患者に依頼しシミュレーション場面を観察し眼球運動計測装置によるデータを用いてフィードバックを行ったり（Elizabeth et al., 2007-2009; Yan, 2010），“気づく”を伸ばす臨床キャリア開発として、臨床実践対応力セルフモニターリングプログラムが検討されている（平成
年度文部科学省大学改革推進事業「看護師の人材養成システムの確立」、新潟大学医歯学総合病院
看護部）.

初学者である看護学生や新人看護師などの教育に眼球運動計測装置を活用する取り組みが始ま
っているものの、単に目の動きを測定しても見ていたか見ていないのかのみを評価することとなり、
観察の意図や根拠を持った視覚を用いた観察や、視覚を用いた観察からどのように臨床判断につ
なげているのかを教育することは困難である。

1.2.4 臨床現場における看護師教育の現状と課題

臨床現場における看護師教育の現状と課題について、厚生労働省から示された「新人看護職員
研修ガイドライン」（2011）の情報と、公益社団法人日本看護協会が示した「継続教育の基準 ver.2」
を確認した。さらに「新人看護職員研修」「新人看護師教育」「看護師教育」をキーワードとして
文献検索を行った。

2009年7月に看護の質確保と資質向上のための制度のひとつとして、保健師助産師看護師法改
正ならびに看護師等の人材確保の促進に関する法律改正が行われ、新人看護職員の臨床研修等の
努力義務化が始まった。新人看護師の臨床研修等の努力義務化に伴い、平成23年2月に厚生労働
省から、「新人看護職員研修ガイドライン」が策定され、これまで各施設独自で行われていた新人
看護職員研修を、医療機関機能や規模にかかわらず新人看護職員を迎えるすべての医療機関で研
修を実施することができる体制を整備した。

ガイドラインでは、看護師の実践能力の構造としてI. 看護職員として必要な基本姿勢と態度、
II. 技術的側面、III. 管理的側面が含まれ、これらの要素について到達目標が示されている。こ
の到達目標に沿って、研修を組み立てる際には「看護技術を支える要素」として1. 医療安全の確
保、2. 患者及び家族への説明と助言、3. 的確な看護判断と適切な看護技術の提供、3つすべて
を確認した上で実施する必要がある。実際の研修の展開では、新人看護師が自ら受け持った患者
に必要な看護を考え、判断する能力を養えるような指導が必要であるとされており、各施設や
各病棟の特徴に応じてOff-JTとOJTが組み合わさりながら研修が実施されている。1年間の研
修を振り返り、看護技術の教育としてベッドサイドで実施するときの一連の流れや、OJTと
Off-JTの融合（中藤, 2011）や、部署ごとの特徴に応じたOJTプログラムの強化、部署ごとによ
る看護技術の経験度の違い（坂本, 2011）など課題も見えてきている。

看護師を対象とした臨床研修等は、新人看護師も含め看護師個々のキャリアの形成を支援する
組織で看護職が一定水準以上の継続教育を受けられるように、公益社団法人日本看護協会が2000
年に「継続教育の基準」を公表し、2012年4月に内容の見直しが行われ「継続教育の基準 ver. 2」を作成した。継続教育の範囲として1）新人看護師、2）ジェネラリスト、3）スペシャリスト、4）管理者、5）教育者・研究者、の5つが含まれ、継続教育の基準として、1）組織と運営の基準、2）学習資源の基準、3）教育活動基準が挙げられこの基準に基づき各施設で継続教育計画に活用できるようになっている。継続教育の課題として、新人看護職員研修の普及と充実、「経験と継続教育によって修得した暗黙知に基づき、その場に応じた知識・技術・能力が発揮できる者」となるジェネラリストの能力開発支援が挙げられている。

ジェネラリストは、臨床現場で「中堅看護師」「キャリア中期」「一定の経験年数を積んだ看護職」、「職場のベテランナース」等といわれ、領域にかかわらず、24時間直接的に患者に向き合う実践者として重要な存在である。しかし、中堅看護師には「看護組織活動」や看護過程における実践に至るまでや実践後の評価など「看護の創造」に対するストレス、役割曖昧と総役割業務負担感が離職意図に影響していることが明らかにされている（瀬川ら、2010）。小山田（2009）は「中堅看護師」の特性と能力開発手法について文献検討を行い、中堅看護師の課題を、期待される役割と自己認識とのズレ・将来希望との不一致による葛藤など様々な葛藤状況や、新人看護師と比較し人間関係ストレスが上昇しきれに対処しようとすると意欲が低いことが挙げられている。また、中堅看護師の能力は「臨床実践能力」「自律度」「臨床判断力」のいずれも、新人期より高まるものの、発達速度においては個人差が大きく、施設の教育体制の充実度やライフイベントとの関係が影響している可能性があり、中堅看護師を対象とした能力開発の機会を設ける必要性を示唆している。さらに、中堅看護師の能力開発手法に共通する要素として、①経験学習を通じた、スキルの獲得・向上や学習意欲の向上をはかる、②様々な対象について内省を深める機会を有することを示している。この2点の要素を踏まえ、さらに他者からの肯定的な評価を受けることが出来るような能力開発プログラムの開発を検討する必要性があると述べている。

1.2.5 文献検討まとめ

文献検討から、臨床現場において常に患者とかかわる看護師は、医療事故やヒヤリ・ハットが起こる状況においており、発生要因として「確認を怠った」「観察を怠った」「判断を誤った」が挙げられている事が明らかにされていた。また、看護の質の確保・資質の向上の観点からも、看護師には高深な観察力と臨床判断力が求められており、複雑な臨床状況における臨床判断の構成要素や特性、思考過程が半構成的面接やエスノグラフィ、プロトコル分析などにより明らかにされており、視覚を用いた観察を客観的に示す方法として、眼球運動計測装置を用いて計測し視覚によ
る観察の特徴を客観的に示し、看護教育の中でも応用されていることが明らかにされていた。しかし、視覚を用いた観察が臨床判断に反映されているかは明確にされていない。医療事故やヒヤリ・ハットが起きないようにするためには、視覚を用いた観察だけや、臨床判断の内容だけでなく、視覚を用いて観察したことを反映させて的確に臨床判断を行うことが必要となる。Lindsay & Norman（1977a）が示した視覚を用いた情報処理過程の“データ駆動型処理”に着目することにより、視覚を用いた観察から臨床判断が始まる過程を明らかにすることが出来ると考えられる。

また、Tanner（2006）が開発した“臨床判断モデル”に含まれる思考過程を参考に分析を行うことによって、視覚を用いた観察から始まる臨床判断がどのように行われているかを明らかにすることができるのではないかと考える。

さらに、視覚を用いた観察と臨床判断の思考過程が一致しているかを確認することによって、見落としや見過ごし、先入観といった観察の誤りの有無を確認することが出来のではないかと考える。

1.3 研究目的

看護師の視覚を用いた観察に基づく臨床判断の構造を明らかにするため、臨床経験年数の異なる看護師を対象とし、以下に3つの目的を挙げる。

1）模擬患者・模擬病室観察時における看護師の眼球運動の傾向を明らかにする。
2）看護師の視覚を用いた観察に基づく思考過程を明らかにする。
3）模擬患者・模擬病室観察時の視覚による観察内容が、観察時の思考過程に含まれる観察項目に反映されているかを明らかにする。

1.4 研究の意義

研究成果は、看護師の視覚を用いた観察から臨床判断を行うための教育方法の開発や改善の資料として活用できると考える。

さらに、視覚を用いた観察に基づく臨床判断が一般化でき、視覚を客観的に示すことにより、具体的に観察ポイントを示すことができ、そこからどのように臨床判断につなげていくのかを示すことができる。視覚に基づく臨床判断が一般化できると、臨床現場での状況の発生頻度や見落としやすい状況など変化を加えることにより、新人看護師だけでなく看護師全体の継続的な能力開発プログラムとして活用できることが期待される。
1.5 本論文の構成

本論文は、看護師の病室観察時における視覚に基づく臨床判断の構造を明らかにすることを目的に5章から構成した。

第1章は、序論として研究の動機・背景から文献検討を行い、本論文の目的・意義を示している。第2章は、視覚を用いた観察として眼球運動、観察時の思考内容を混合研究法によってデータ収集、分析を行うための研究方法を提示した。第3章は、眼球運動と思考内容の分析結果と眼球運動と思考内容の一致を分析した結果を示した。第4章は、結果を受けて病床観察時の看護師の眼球運動の傾向・特徴、思考内容の傾向・特徴、看護教育への活用について考察を提示した。第5章は、総括として本研究から導かれた看護師の視覚に基づく臨床判断の構造を提示した。

本研究の眼球運動に関するデータ・分析・結果・考察は “林静子、丸岡直子、寺井梨恵子（2015）：病室観察時における看護師の眼球運動の傾向、石川看護雑誌、2015年3月掲載予定。”を改変及び再構成したものである。
第 2 章 研究方法

2.1 研究デザイン

本研究は、模擬患者と模擬療養環境の画像をモニターに示し視覚を用いた観察を量的データとして収集する方法と、画像の提示前後の思考過程を質的データから収集する混合研究法デザインである。

2.1.1 研究の枠組み（図 2.1）

本研究において、看護師の視覚を用いた観察に基づく臨床判断の構造を明らかにする研究枠組みとして、Lindsay & Norman（1977a）の感覚器から入る信号の“データ処理過程”“概念駆動型処理”の情報処理過程のうち、“データ駆動型処理”を参考に、提示された刺激を視覚から入る刺激に焦点を当て、視覚による観察を臨床判断のきっかけとして情報処理を行っているとした。

臨床判断時の思考過程は Tanner（2006）の臨床判断モデルを参考に、介入の実施に至るまでの「気づき」として行われる“確認・状況把握”，「解釈・理解」として行われる“推論”，「反応」として行われる“ケア決定”を設定した。

この研究枠組みの中で、3つの研究目的を達成するために調査・分析を行う。

1 つ目の目的である看護師の眼球運動の傾向を明らかにするために、提示した画像を観察する際視覚を用いた観察に焦点を当て、眼球運動計測装置（Talk EyeⅡ：竹井機器工業、以下 Talk EyeⅡ）を用いて眼球運動を客観的に記録し分析を行う。

2 つ目の目的である看護師の視覚を用いた観察に基づく思考過程を明らかにするために、刺激として提示した画像の視覚を用いた観察を基に、臨床判断を行う思考過程を発話思考法を用いてデータ収集しプロトコル分析する。

3 つ目の目的である視覚による観察内容が観察時の思考過程に反映されているかを明らかにするため、提示画像内の眼球運動と画像を観察している時の思考過程を照らし合わせ分析する。
図 2.1 研究の枠組み

2.1.2 用語の定義

本研究における用語の定義を以下に示す。

(1) 適観
対象（患者）を正しく理解するために五感を用いて情報を得ることとした。

(2) 気づき
情報収集し、常に変化する状況に従いながら予測的に患者の推移を見通し確認・現状把握を行う思考内容とした。

(3) 臨床判断
Tanner (2000; 2006) の定義より、患者のニーズ、懸念、健康上の問題についての解釈や結論、あるいは行動を起こす（起こさない）標準的なアプローチを用いるのか、それを変更して用いるのか、それとも患者の反応に応じて適切と思われる新しい対応をその場で作り出すのかを判断することとした。
かといった決定を意味するものとした。

(4) 注視

視対象を移動した時、眼球が安定する100ms以上注視点が停留している状態（Honda 1990）を注視と定義した。今回使用するTalk Eye IIのサンプリング周波数は30Hz（1秒あたり30データを収集。データ/33.3ms）に設定した。

(5) 注視時間

連続的に注視を行っている時間とした。

2.2 研究対象

対象は、日常的な業務として患者への直接的なケアを実施している看護師33名とした。対象者の条件として、矯正視力を含め日常生活上で障害がない視力を有する者、実験当日に疲労感や眠気が自覚がない状態で参加できることとした。ハードコンタクトレンズ、眼内レンズを用いている者は眼球運動の測定時、レンズの特殊性から角膜反射の反射点をとらえることができず、視点位置を表示することが出来ない（福田ら，2009）ため対象から除外した。

2.2.1 対象者のリクルート方法

1) 研究協力施設の看護部長に文書を用い研究協力の説明をして承諾を得た。
2) 看護部長に看護師が研修や勉強会などの終了後に研究について説明を実施する機会の調整を依頼した。
3) 事前に研究参加協力のお願いのポスターを参加対象となる看護師にわかる場所へ掲示を依頼し、研究概要についての説明会への参加をお願いした。
4) 研究概要の説明会では、「研究の概要・研究参加協力のお願い」と「同意書」を配布し、研究目的・研究方法・倫理的配慮等について説明を行った。
5) 研究概要の説明後、研究参加協力に同意の意思を示す看護師から、「同意書」に参加協力の意思と連絡先を自筆により記載し郵送してもらった。
6) 参加協力の意思が表示された場合、後日研究者が直接連絡を取り日程の調整を行った。

2.3 調査協力施設・調査場所

北陸・近畿地区にある250床以上の急性期病院（国・公的医療機関），5施設で実施した。

調査場所は、調査協力施設の病院内にあるカンファレンスルームや会議室等、調査中にプライ
バシーを保つことができ、対象者が集中できるような静かな場所で実施した。調査場所を確保できるように、調査協力施設の看護部長に場所の調整を依頼した。

2.4 調査期間
平成25年8月～12月

2.5 調査方法
2.5.1 実験手順
実験は3段階に分けて実施した。

第1段階として、対象者に刺激として模擬患者情報を記載した文書を渡し、内容を読み情報収集してもらった。

第2段階は、眼球運動計測装置（Talk EyeⅡ：竹井機器工業株式会社製、以下、Talk EyeⅡ）を装着し、刺激となる連続的に提示された4つの模擬患者と模擬患者・模擬病室画像を視覚を用いて観察を行い、眼球運動を記録した。モニターに映し出す画像は一画像あたり5秒間、次の画像に切り替わる際に何も映っていない白地画像を1秒間組み合わせ連続的に提示した。連続的に画像が切り替えられることによる観察時の焦燥感の軽減と病室内の配置に慣れるため、実験前に患者が入院していない模擬病室の状況を示す4つの画像を連続的に提示した。

第3段階は、画像の観察後Talk EyeⅡを外し、画像観察時の視線軌跡を再生しながら、発話思考法を用いて画像を観察している時の思考過程を振り返り語ってもらった。
図2.2 実験手順概要

※注

・研究者の行動を示す。
・対象者の行動を示す。

2.6 患者設定

2.6.1 模擬患者情報

第1段階で提示した模擬患者情報を以下の内容である。

Aさん、85歳の女性。3〜4日前から咳がおき、38度台の発熱があり、食欲がない。水分もほとんど取れない状態であった。昨夜、外来受診し、レントゲンの結果肺炎所見あり、血液データ上の炎症反応が強く、個室に入院することになった。

今朝（AM8:00）の状態は、体温37.7度、脈拍88回/分、呼吸数22回/分、血圧128/78mmHg、酸素飽和度は94%であり、ファウラー位で休まれていた。現在、持続点滴と抗生物質の投与が行われている。

これまで、大きな病気をしたことがなく入院することが初めてである。日常生活において介助の必要はない。

現在AM9時30分、今から患者の病室を訪問する。
2.6.2 模擬患者情報の設定理由
肺炎は日本における主要死因別に見た人口10万人に対する死亡率が3位となっており、特に70歳代以上から増加し80歳以上の死亡率（人口10万対）では1,120.4と高率となっており（国民衛生の動向2012），患者設定として一般化できるものとする。症状としては、日本呼吸器学会による成人中肺炎診療ガイドライン（2007）の重症度分類（A-DROP）の基準となる5つの項目を参考にし、A（Age）女性75歳以上・D（Dehydration）脱水の2項目を該当するような内容とする。この状態から、バイタルサインや酸素飽和度のデータを確認し、肺炎の悪化が起こる可能性、改善方向に向かっている可能性の両方を予測する必要があるものとした。

2.6.3 模擬療養環境の設定
第2段階で示す模擬患者・模擬病室画像は、実際の臨床場面に近づけるため模擬患者に協力を依頼し、模擬患者情報に沿った状況になるように、ベッドの高さの調整や、ベッド柵やナースコールなどの設置、酸素マスク・吸引器の設置など模擬病室内の環境を調整した。模擬患者情報の内容と模擬病室内に配置した物品等の状況は、慢性呼吸器疾患看護認定看護師（以下、認定看護師とする）に依頼し実際の臨床場面に近い状況を設定しているかの確認を行った。

2.6.4 模擬患者・模擬病室画像の撮影
提示する静止画像を撮影するため、まず認定看護師に模擬病室を訪問し退室するまでの動作を繰り返してもらい、眼の高さにビデオカメラを設置し動作時に見えている範囲を撮影した。その後、撮影した映像を認定看護師と研究者で検討を行い、観察の流れに沿って4つの場面に分け、場面ごとに静止画の撮影を行った（図2.3）。
観察の流れに沿って提示する画像の内容は、画像I：訪室時に模擬病室入口から見える模擬病室全体（以下、訪室時：病室全体）、画像II：ベッドサイドに移動し、模擬患者に接近した状態から見える模擬患者の上半身・頭部側のベッド周囲（以下、ベッドサイド①）、画像III：ベッドサイドで模擬患者に接近した状態で画像IIとは見える角度を変えた状態の模擬患者の上半身、頭部側のベッド周囲（以下、ベッドサイド②）、画像IV：退室時に模擬病室入口から画像Iとは見える角度を変えた状態の模擬病室全体（以下、退室時：病室全体）とした。
2.6.5 模擬患者・模擬病室画像の提示時間の設定

画像提示時間は静止画像を観察する場合、観察時間の制限に伴う焦燥感を考慮して制限しないもの（大黒ら, 2013; 西村ら, 2013; 河合, 2000）が報告されている。本研究は、看護師が病室に入り患者のベッドサイドに近づき、病室を退室するまでの臨床場面により近い状況を課題とするため、画像提示時間を制限することとした。西方ら（2012）は、連続的に画像を提示する際、画像 1 枚あたりの提示時間 8 秒間に提示していた。これを参考に、本研究で提示する 4 つの画像を用い検討を行ったが、1 枚あたりの画像提示時間が長く感じられ、認定看護師の模擬病室を訪室し退室するまでの動作を撮影した映像の所要時間とも異なっていた。そこで、認定看護師の模擬病室を訪室し退室するまでの動作映像の所要時間を参考に、1 画像あたり 5 秒間とし、画像の切り替わり時に 1 秒間白地の画像を提示した（図 2.4）。

図 2.3 模擬患者・模擬病室画像 I ～IV
図 2.4 画像提示時間の流れ

1) 画像撮影時期
平成 25 年 7 月

2.7 データ計測・収集方法

2.7.1 眼球運動計測: Talk Eye II

視覚を用いた観察は Talk Eye II（図 2.5）を用いて眼球運動を計測した。Talk Eye II は、対象者の頭部に装着する小型で軽量（0.22Kg）なヘッドセット検出器と、データ処理を行う処理器で構成されている。ヘッドセット検出器には、近赤外線光を照射する発光ダイオード（以下、LED）と眼球撮影カメラを組み合わせた眼球検出ユニットが取り付けられており、本研究では、右眼の眼球検出を行った。眼球検出は角膜反射法を用いて眼球に近赤外線を照射し、プルキンエ像を利用した。Talk Eye II は測定時の放射照度 E_{max} は 1.728m[W/cm²]と基準値の約 1/6 であり、眼球への安全性が確保されている。

眼球運動には、注目している対象を注視している点を示す注視点、注目の対象を変更するために動く視線の軌跡のサッカードが含まれている。本研究では、注視点の定義として眼球運動速度 5 度/s を閾値として注視点の範囲を設定し（山田ら、2004）、注視点の停留時間として眼球の位置が安定する 100ms 以上停留している場合（Honda, 1990）と定義する。
図 2.5 Talk Eye II ヘッドセット （竹井機器工業 Talk Eye HP より）

1）視点計測準備手順

(1) 視距離の設定
画像を提示する 19 型の液晶モニターを対象者の目線の高さに合わせ、画面と眉間との距離を 50 cm に調整する。

(2) 特徴点の抽出
視点を求めるための基準となる特徴点として瞳孔とプルキンエ・サンソン像と呼ばれる反射像の抽出を行う。眼球摄影カメラに撮影された眼球映像画面の中央に瞳孔が位置するように調節する。眼球に LED を照射し、瞳孔とプルキンエ・サンソン像を撮影し、高速画像処理を行いそれぞれの中心位置を算出した（図 2.6）。眼球に照射する LDE はピーク波長 860nm でパルス点灯を行っており、米国労働衛生専門官会議(AGGIH)基準の値の約 1/6 であり眼球への安全性を確保している（Talk Eye II ヘッドセット検出器 取扱説明書より）。

(3) 視点の算出 （図 2.7）
5 点較正法により刺激提示モニター上に指標を順番に点灯し、瞳孔とプルキンエ・サンソン像の中心位置の変化から視線方向の算出を行う。求められた視線方向を提示する画像の座標に変換し視点位置の表示を行った。

(4) 計測条件設定
データ計測はサンプリングを 30Hz（1フレーム 33.3ms 相当）、注視基準として視線の移動速度 5deg/s 以下（山田、福田、1986）で設定を行った。注視は、ある対象から別の対象に視線を移す時に起こるサッケード後に視点が安定する 100ms（3フレーム）以上停留している状態（本田、1993）とし、注視が継続している時間を注視時間と定義した。
2.7.2 思考過程の内容：発話思考法

第3段階では、模擬患者・模擬病室画像観察後にTalk Eye IIを用いて計測した眼球運動の視線軌跡を見ながら、模擬患者・模擬病室画像観察時の思考を声に出して語ってもらった。

模擬患者・模擬病室画像観察時の思考を声に出して語る方法として、「課題を達成する間に頭に浮かんだことをすべて声に出して語る」発話思考法を用いた（海保、原田、1993, p.82）。発話思考法によって「人が自分自身の知的営みについて語ること（語らせられたこと）」はプロトコルや発話と呼ぶ場合がある（海保、原田、1993, p.13, p.23）。本研究では、声に出して語られるものを発話とする。

発話思考法には、①課題を実施している時に考えていることを声に出して語る“シンクアラウド法”、②課題を実施している時の行動をビデオカメラなどで記録しておく、課題の実施終了後に記録されものを振り返りながら、課題を実施している時に考えた事や感じたことなどを頭に浮かんだ事をすべて声に出して発話する“レトロスペクティブ法”と呼ばれる方法がある。レトロスペクティブ法は、シンクアラウド法よりも豊富なプロトコルを得られる（Hansen, 1991）と報告されている。本研究では、課題として模擬患者・模擬病室画像4枚を1枚あたり5秒間で連続的に
観察をすることを挙げており、課題を実施しながら声に出して発話する“シンクアラウド法”では、考えていることを声に出して語ろうとするうちに課題が終了してしまう。そのため、模擬患者・模擬病室画像を見た直後に視線跡を観ながら声に出して語る、“レトロスペクティブ法”によって発話する方法を選定した。しかし、模擬患者・模擬病室画像を観察した直後であるものの、実際に模擬患者・模擬病室画像を観察している時に考えたことではないため、視線跡を見ながら知識や経験を基に語っている“概念駆動型処理”の情報処理過程が発話内容含まれている可能性を考慮する必要がある。

また、発話思考法を実施する際、対象者は単に「観察時の思考を声に出して語ってください」と言われてもどのように話すのか、研究者以外の人には聞かれてしまうのではないかと戸惑う可能性が高い。そのため、テスト画像を見ながら頭に浮かんだことを話す練習を行った。また、関係者以外が入り込まないように環境を整え、リラックスした状態で課題に取り組めるように工夫をした。

発話思考法で得られる発話データは Ericsson & Simon (1993) が示した、人が思考過程・思考内容を口頭報告する行為のうち「内面的な状態（焦点化されている短期記憶の内容）をそのまま言語化する」レベルに相当する。しかし、口頭報告を行う対象者が本当に正しく言語化することができているのか疑問視される。特に、口頭報告を行う対象者の前提として①自分のしていることを知っている、②自分のしていることを語ることができる、③自分のしていることを「正直に」語ることの3つと裏返しに、④自分のしている事は知らない、⑤自分のしていることを本当は語ることができない、⑥語ることは嘘あるいはお気にすぐないことが挙げられている（海保・原田, 1993, p19-20）。本研究では⑥にあげられている前提を補うために、課題として模擬患者・模擬病室画像を観察している時の視線軌跡を客観的に示しながら、実際に視線軌跡が示されていることについて声に出して語る、“レトロスペクティブ法”を行うこととした。

1) 発話思考法実施手順
(1) 緊張しない状況・環境の設定
課題に集中することができ自然に話ることができるように、研究協力施設の関係者以外の立ち入りがなく静かで環境の確保を依頼した。また、時間的な余裕を確保できるように対象者と時間の調整を行った。
(2) 発話思考法の練習
発話思考法によって声に出して語ることは日常的に話を行う状況とは異なり、即座に実施する
ことは難しい。そのため、課題提示前に「患者が臥床していない状態のベッドの画像」を観察して、「何を見て・何を考えていたか」を声に出して語ってもらう練習を行った。

(3) 課題の提示・発話思考法の実施

研究者は、対象者に課題とする模擬患者·模擬病室画面を観察した時に計測した眼球運動データを 1 データ（33.3ms）毎にコマ送りしながら視線軌跡を提示し、模擬患者·模擬病室画面を観察していた時の思考を振り返りながら、対象者に視線が停留している時に“何を見て・何を考えていたか”を発話思考法を用いて語ってもらった。発語される発話内容は、対象者に許可を得て ICレコーダに録音した。

口頭報告がされない場合には適宜、「ここでは何か見ていたか」「ここで何を考えていましたか」と発話を促すようにした。また、口頭報告では対象者の思考内容が語られているため、不必要なあいづちをうったり研究者との対話をしないように留意した。

2.8 分析方法

2.8.1 分析 I : 眼球運動計測データの分析

本研究の目的 1）模擬患者·模擬病室観察時における看護師の眼球運動の傾向を明らかにするため、模擬患者·模擬病室画面観察時の眼球運動計測のデータを分析した。画像観察時の眼球運動のデータは、任意領域解析処理プログラム（竹井機器工業）を使用し、画像に移っているものに合わせて任意的に画像を区切り観察領域を設定した（図 2.8）。画像Ⅰは 10 領域、画像Ⅱ～Ⅳはそれぞれ 9 領域に区切り分析を行った。

測定指標は、各画像を注視している時間を合計した「総注視時間」、各画像において設定した領域を注視していた時間を合計した「領域別注視時間」、各画像に設定した領域の「注視の有無」とした（図 2.9）。

「総注視時間」は Kolmogorov–Smirnov 検定を用いて正規性を確認し（P=.083）、一元配置分散分析を行った。「領域別注視時間」は注視していない対象者も含まれており正規性を確認できなかったため、Kruskal-Wallis 検定を行った。統計処理には、SPSS Statistics 20 を用い、有意水準 5%とした。

対象者は、臨床経験年数別に 1・4 年目、5・9 年目、10 年目以上の 3 つに分けて分析を行った。眼球運動を比較した先行研究では、看護師の臨床経験年数を問わず観察が必要な領域が定まっており、重要な領域を注視しているが、その中でも特に、臨床経験年数が長い看護師は重要な領域を長い時間注視していることが報告されている（河合, 2000; 笠井ら, 2011; 西方ら, 2012）。しか
し、中堅看護師を含めた臨床経験年数を段階的に比較した研究はない。臨床経験年数が5年以上の中堅看護師は「臨床実践能力」「自律度」「臨床判断力」のいずれも個人差はあるものの新人期より高まっている特性がある（小山田, 2009）。そこで、臨床経験年数5 - 9年目を中心に1 - 4年目と10年目以上の3つに分けることとした。
図 2.8 画像別観察領域名・注視例

画像内の●は視点が停留している注視点を示す。

* は視線軌跡を示す。
図2.9 画像I：注視時間（領域別・画像合計）・注視の有無の分析例

* 画像Iの中で吸引器領域の注視は2回行っているため、2回の注視時間を合計して領域別注視時間をとする。

<table>
<thead>
<tr>
<th>画像I 合計注視時間</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>1フレーム</td>
<td>33.3ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>画像提示時間</th>
<th>注視時間</th>
<th>視線軌跡が存在する領域</th>
<th>領域別注視時間 (ms)</th>
<th>注視有無</th>
</tr>
</thead>
<tbody>
<tr>
<td>0秒</td>
<td></td>
<td>顔</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>1フレーム</td>
<td>100</td>
<td>患者の足元・ソファの上の布団</td>
<td>100</td>
<td>○</td>
</tr>
<tr>
<td>1秒</td>
<td></td>
<td>顔</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>1フレーム</td>
<td>100</td>
<td>吸引器</td>
<td>100</td>
<td>○</td>
</tr>
<tr>
<td>2秒</td>
<td></td>
<td>L字柵</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>2フレーム</td>
<td>266.7</td>
<td>センサーマット・スリッパ</td>
<td>266.7</td>
<td>○</td>
</tr>
<tr>
<td>3秒</td>
<td></td>
<td>患者の足元・ソファの上の布団</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>3フレーム</td>
<td>133.3</td>
<td>窓・ソファ</td>
<td>133.3</td>
<td>○</td>
</tr>
<tr>
<td>4秒</td>
<td></td>
<td>患者の足元・ソファの上の布団</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>4フレーム</td>
<td>166.7</td>
<td>吸引器</td>
<td>166.7</td>
<td>○</td>
</tr>
<tr>
<td>5秒</td>
<td></td>
<td>L字柵</td>
<td>133.3</td>
<td>○</td>
</tr>
<tr>
<td>5フレーム</td>
<td>133.3</td>
<td>ナースコール</td>
<td>133.3</td>
<td>○</td>
</tr>
</tbody>
</table>
2.8.2 分析Ⅱ：思考内容の分析

研究目的 2）看護師の視覚に基づく思考過程を明らかにするため、模擬患者の病室を観察する流れに沿った4つの画像の観察を通して得られた発話をプロトコル分析を用いて分析を行った。

プロトコル分析は人間の問題解決過程や専門家の思考過程、経験しつつある事柄について発話思考法により被験者が口頭で報告したもの（言語プロトコル）から、一般的思考プロセス、思考の順序を明らかにするために用いられている（Ericsson & Simon, 1993; Ericsson, 2009; 海保, 原田, 1993）。

分析手順を以下に示す。

1）発話思考法によって得た発話から、対象者ごとに逐語録を作成した。
2）逐語録は対象者の発話があった時の眼球運動計測の視線軌跡や、発話の前後の脈絡から観察した発話が次の観察の発話に移る切れ目を発話単位の終了基準として、発話単位ごとにID番号をつけた。
3）発話単位を繰り返し読み“何を見たか”という観察内容と、“何を考えたのか”という思考内容に分類する。
4）観察内容を繰り返し読み回し、内容の類似性から観察カテゴリーを抽出した。
5）観察内容の発話単位について発話があった人数と、全発話単位数に対する割合を、臨床経験年数別に算出した。
6）思考内容の発話単位を、研究の枠組みに沿って【確認・状況把握】【推論】【ケア決定】の3つの思考過程に分けた。
7）思考過程の発話単位を逐語録に戻って確認し、思考過程の特徴から思考類型を抽出した。
8）抽出された思考類型に該当する人数・割合を臨床経験年数別に確認した。

対象者は臨床経験年数別に1年目、2-4年目、5-9年目、10年目以上の4つに分けて分析を行った。臨床判断に関する先行研究では、他の臨床経験年数の看護師に比べ1年目の新人看護師には、【マニュアルに依存する】【自分の力量から患者を看る】といった特徴があり、＜ニーズ把握＞＜思い込み＞となる場合があること（藤内ら, 2008）が明らかにされている。本研究においても、1年目の対象者が発話する思考過程に特徴があると考える。また、中堅看護師の特性として、「臨床実践能力」「自立度」「臨床判断力」のいずれも新人期よりは高まるものの発達度合いについては個人差が大きい（小山田, 2009）ことが報告されている。さらに、熟練看護師には高い能力を持ち合わせている。そこで、分析Ⅱでは臨床経験年数別に1年目、2-4年目、5-9年目、10年目以上の4つに分けて分析を行った。
年目以上の4つに分けることとした。

思考内容の発話単位から思考類型への分析を例示する。以下に示す本文中において、観察領域・観察カテゴリーは≪≫、観察項目は<>, 思考過程【】、思考過程の類型は【 】、発話内容は「 」で示し末尾に看護師のケース番号と臨床経験年数を示す（N 番号 - 臨床経験年数）を付けた。

≪ナースコール≫の発話単位例

①「ナースコールを見て」（N33・1年目）
[
確認・状況把握
]
→【確認・状況把握型】＊確認のみ

②「ナースコールの位置かな」（N19・2年目）＊確認・状況把握している
[
確認・状況把握
]
→【確認・状況把握型】

③「ナースコールは届くのかな、使っているのかな」（N28・3年目）
[
確認・状況把握
] [推論]
→【推論型】

④「気になってますね。ナースコール届くんやったら、
[
確認・状況把握
] [推論]
柵にくくりつけて、手の点滴のところでも押せるように下に持っていきますね」
[ケア決定]
(N18・6年目)
→【ケア決定型】

⑤「ナースコールは、手の届くところにした方がいいんじゃないかなと思いました。」
[
確認・状況把握
] [ケア決定]
(N14・5年目)
→【感的ケア決定型】
2.8.3 分析Ⅲ：眼球運動データと思考内容との一致

研究目的 3) 模擬患者・模擬病室観察時の視覚による観察内容が観察時の思考過程に含まれる観察項目に反映されているかを明らかにするため、模擬患者・模擬病室画像の注視箇所と模擬患者・模擬病室画像観察時の観察内容・思考内容の発話単位を分析項目とした。

以下に分析手順と分析例（図2.10）を示す。

1) 注視箇所は任意領域解析処理プログラム（竹井機器工業）を使用し、模擬患者・模擬病室画像を解析するために設定した領域に、視線の移動速度 5deg/s 以下かつ、視点が100ms 以上連続的に停留している状態にあるものとした。

2) 発話単位は、発話思考法を用いて観察カテゴリーの観察内容について語られたものとした。

3) 模擬患者・模擬病室画像ごとに注視箇所と観察内容の発話単位を照合し、注視箇所と発話単位が一致している数を算出した。

4) 全注視箇所に占める一致した注視箇所数の割合を算出した。

5) 注視箇所と一致した発話単位から、1つの注視箇所に対する発話単位数を算出した。

対象者は、対象者を分析Ⅱと同様、1年目、2-4年目、5-9年目、10年目以上の4つに分けで分析を行った。
図2.10 注視箇所と発話内容の一致分析例

<table>
<thead>
<tr>
<th>画像Ⅰ</th>
<th>注視時間 (ms)</th>
<th>視線軌跡が存在している領域</th>
<th>注視有無</th>
<th>発話内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>0秒</td>
<td>頭</td>
<td>-</td>
<td></td>
<td>2-1-1 表情とか顔を見ようと思った</td>
</tr>
<tr>
<td></td>
<td>患者の足元・ソファの上の布団</td>
<td>*1 ○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1秒</td>
<td>頭</td>
<td>-</td>
<td></td>
<td>2-1-2 コールマットを見た</td>
</tr>
<tr>
<td></td>
<td>吸引器</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2秒</td>
<td>L字柵</td>
<td></td>
<td></td>
<td>2-1-3 柵が目に入った</td>
</tr>
<tr>
<td></td>
<td>センサーマット・スリッパ</td>
<td>-</td>
<td></td>
<td>2-1-4 スリッパを見た</td>
</tr>
<tr>
<td>3秒</td>
<td>患者の足元・ソファの上の布団</td>
<td>-</td>
<td></td>
<td>2-1-5 酸素マスクがどこにつながっているかを見た</td>
</tr>
<tr>
<td></td>
<td>客・ソファ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4秒</td>
<td>客・ソファ</td>
<td>○</td>
<td></td>
<td>2-1-6 中央配管の周囲を見た</td>
</tr>
<tr>
<td></td>
<td>患者の足元・ソファの上の布団</td>
<td>-</td>
<td></td>
<td>2-1-7 周囲を見ようと思った</td>
</tr>
<tr>
<td>5秒</td>
<td>頭</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>吸引器</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L字柵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ナースコール</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注1 注視しているが、発話単位なし。
注2 注視していないが、発話単位あり。

は注視箇所と思考内容の一致を示す。

図 2.10 注視箇所と発話内容の一致分析例
2.9 倫理的配慮

本研究は、石川県立看護大学倫理委員会の承認（看大第423）、および協力病院の倫理審査委員会の承認を得て実施した。

刺激画像に出演する模擬患者には文書を用い口頭で研究の主旨・撮影の必要性・撮影方法・提示方法を説明し同意を得た。文書による患者情報、模擬療養環境の設定について助言を受ける認定看護師には、文書を用いて口頭で研究の主旨・方法、認定看護師による助言の必要性について説明して了承を得た。

研究協力施設の施設長および看護部長へは文書を用い口頭で研究の主旨・方法・倫理的配慮等について説明して了承を得た。

研究対象者となる看護師に研究の主旨・方法等について説明ができるように、看護部長に病院内研修や勉強会など看護師が集まる場で、説明を行う時間が取れるように調整を依頼した。また、研究概要の説明前に、説明会の日時や場所等を記載した「研究参加協力のお願い」のポスターを、病院内で看護師の目に留まる場所への掲示を依頼した。

研究参加協力についての説明会では、説明会に参加している看護師全員に「研究の概要・研究参加協力のお願い」と「同意書」を配布し、研究の主旨・方法・研究参加は自由意思で参加されないことによる不利益をこうむることはないことを説明した後、研究参加の同意を示した後でも中断・中止は可能であること、得られたデータは匿名性を保持し厳重に管理すること、研究参加の有無が業務に影響しないことなど、倫理的配慮等が記載された文書を配布し口頭で説明を行う。研究に参加する意思がある場合、同意書に参加の意思と氏名・連絡先を自署し提出していた。参加を希望された場合、研究者が直接連絡を取るように連絡先の記載を依頼し、後日直接、連絡可能な手段（電子メールもしくは電話等）で連絡をとり調査可能な日程の調整を行った。

日程調整後、再度研究について文書を用い説明を行い、研究参加同意書へ参加の意思と氏名・連絡先を自署し提出していただく。同意書は複写を行い一部は本人に渡しもう一部は研究者が保管する。同意の意思を示した後、同意を撤回する場合は、研究協力取りやめの手続きに氏名を自署により記載し研究代表者に郵送をした。

2.9.1 刺激画像の模擬患者（出演者）に対する配慮

1）その対象となる個人の人権の擁護

（1）研究への協力は自由意思に基づくものとし、拒否できることを説明した。また、協力の同意後であっても、いつでも中断することができることを説明した。
(2) 研究への協力を拒否・中断した場合でも、何も不利益を被らないことを保証することを説明した。
(3) 模擬患者は個人が特定されないようにし、匿名性を維持した。
(4) 撮影した画像は、研究目的以外に使用しないことを説明した。
(5) 撮影した画像データは、パスワード設定を行った電子媒体に保存し鍵のかかる場所に保管し厳重に管理する。研究終了時には消去し、再生・復元できないように処理を行う。
(6) 撮影時は他の出入りがなく、プライバシーが保護される場所で行った。

2) 撮影によって生じる個人の不利益及び危険性に対する配慮

(1) 撮影時間が60分程度を予定しているが、途中に休憩が取れるようにした。
(2) 画像の設定では一般的な入院患者としているが、撮影時に自尊感情に影響する可能性があるため、常に模擬患者の表情や言動に十分注意し、必要時に思いを聞くなど配慮した。
(3) 撮影した映像は模擬患者に提示し、同意を得たものを使用する。同意後であってもいつでも使用を中止できることを説明した。

3) 模擬患者（出演者）の理解と同意

(1) 模擬患者（出演者）に対して文書を用い口頭で映像作成の趣旨・方法、倫理的配慮等を説明し、同意書の署名をもって同意を得た。
(2) 同意書は複写により2部作成し、出演者（本人用）と研究者（研究者用）が1部ずつ保管した。

2.9.2 研究対象者に対する倫理的配慮

1) 個人の人権擁護

(1) 研究への参加・協力は自由意思に基づくものとし、拒否できることを説明した。また、参加・協力の同意後であっても、いつでも拒否・中止・中断することができることを文書で説明した。
(2) 研究への参加・協力を拒否した場合でも、不利益を被ることがないことを文書で説明した。
(3) 参加・協力の同意の意思を示した後、同意を撤回する場合には「研究協力取りやめの連絡」を郵送することによって、研究協力を取りやめることができることを説明した。
(4) 視覚による観察内容の録画、メモの記録・インタビュー内容の録音には、対象者の了解を
得て行った。

(5) 研究で得られた情報（視線情報・インタビュー内容）は、個人が特定できないよう「照合番号」に置き換えて厳重に管理し、分析過程及び結果の公表時において匿名性を維持した。

(6) 個人が特定されるようなプライバシーが含まれる書類や研究で得られた情報（録画・録音記録、印刷書類等）は、健のかかる場所に厳重に保管した。

(7) データを保存した電子媒体はパスワード設定を行い、厳重に保管した。

(8) 研究で得られた情報は、研究目的以外に使用しないことを説明した。

(9) 研究で得られた情報（録画・録音記録、印刷書類等）は研究終了時に再生・複製できないように処理を行い破棄することを説明した。

2) 個人の不利益及び危険性に対する配慮

(1) 視覚情報の計測（Talk Eye IIの装着・課題の説明・課題提示）、観察時の思考過程の振り返り（思考発話・半構造化面接）には45分程度を予定しており、事前に十分な日程調整を行った。

(2) 調査を行う場所は、他者の出入りがなくプライバシーが保護されるような場所とした。

(3) 視線情報の収集に使用するTalk Eye II（竹井機器工業株式会社製）の撮影方法と、眼球に対する安全性が確保されていることを説明した。不安や気になることがある場合、何度も質問をしてよいこと、研究の中断、研究参加を拒否することができることを説明した。

(4) Talk Eye IIのヘッドセットは小型で、拘束感が少ないものの、視界にカメラが入り込むことにより緊張感が強くなったり、気分が沸かす可能性がある。そのため、研究参加者の緊張を緩和できるような準備を行った。

(5) ヘッドセット装着後であっても、違和感や苦痛、気分が沸かすければ中止できることを説明し、課題提示前にも再度確認を行った。

(6) 観察時の思考過程の振り返りは、能力を測定するものではないことを説明し、自由に発話できるように配慮した。

3) 研究対象者の研究に対する理解と同意

(1) 研究協力施設の施設長および看護部長に口頭で研究の主旨・方法・倫理的配慮等について説明を行い了承を得た。

(2) 研究協力病院の倫理審査を受け、当該病院の規定に従って申請し承認を得た。
(3) 研究対象者となる看護師に研究の主旨・方法等について説明ができるように、看護部長に病院内研修や勉強会など看護師が集まる場で、説明を行う時間が取れるように調整を依頼した。

(4) 研究概要の説明前に、説明会の日時や場所等を記載した「研究概要の説明会、開催のお知らせ」のポスターを病院内で看護師の目に留まる場所への掲示許可を依頼した。

(5) 協力施設内で看護師の目に留まる場所に、「研究概要の説明会、開催のお知らせ」のポスターを掲示し、研究概要説明会の参加を呼び掛けた。

(6) 研究概要の説明会では、参加者全員に「研究の概要・研究参加協力のお願い」と同意書を配布し、研究者が口頭で研究の主旨・方法・研究参加の自由意思性、参加の有無による不利益は生じないこと、研究参加の同意を示した後でも中断・中止は可能であること、得られたデータは匿名性を保持し厳重に管理することなど説明を行った。

(7) 研究概要の説明後、研究参加協力に同意できる方に、「同意書」に研究参加協力の意思と連絡先を自筆により記載し封筒に入れて郵送してもらった。

(8) 同意書は複写により2部作成し、研究者と研究対象者が一部ずつ保管した。

(9) 同意書には連絡が取れるように氏名、連絡可能な方法（電話番号・メールアドレス等）を記載してもらった。

(10) 参加希望された場合、研究者が直接連絡を取り日程調整を行い再度、口頭と文書により研究の主旨および方法・倫理的配慮について説明を行った。
第3章 結果

3.1 対象者の基本属性（表3.1）

対象者は33名で性別は女性30名、男性3名であった。臨床経験年数の平均±標準偏差は8.2±6.7年、範囲は1〜25年であった。臨床経験年数別にみると1年目は7名、2〜4年目は4名、5〜9年目は12名、10年目以上は10名であった。

勤務している診療科別では、外科系（HCU、ICU、消化器外科、脳外科、整形外科、眼科等）は全体11名、臨床経験年数別にみると1年目2名、2〜4年目2名、5〜9年目5名、10年目以上2名であった。内科系（呼吸器内科、循環器内科、消化器内科、神経内科等）に勤務しているものは、全体20名、臨床経験年数別にみると1年目5名、2〜4年目2名、5〜9年目5名、10年目以上8名であった。精神科は全体2名で、2名とも臨床経験年数は5〜9年目であった。

プリセプターや学生指導の実習指導など教育担当の経験の有無は全体23名、臨床経験年数別にみると1年目0名、2〜4年目3名、5〜9年目11名、10年目以上9名であった。

副看護師長や主任など役職を持っているものは、全体7名、臨床経験年数別にみると5〜9年目1名、10年目以上6名であった。

表3.1 対象者の基本属性概要

<table>
<thead>
<tr>
<th>臨床経験年数</th>
<th>所属病棟*1</th>
<th>教育担当の経験者*2</th>
<th>役職*3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>外科系</td>
<td>内科系</td>
<td>精神科</td>
</tr>
<tr>
<td>全体 n=33</td>
<td>11</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>1年目 n=7</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2〜4年目 n=4</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5〜9年目 n=12</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>10年目以上 n=10</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

*1 外科系：HCU、ICU、消化器外科、脳外科、整形外科、眼科等
内科系：呼吸器内科、循環器内科、消化器内科、神経内科等
*2 教育担当：プリセプター、実習指導者、教育担当等
*3 役職：副看護長、主任等
3.2 眼球運動

3.2.1 総注視時間

画像I〜IVの各画像の注視時間を合計した総注視時間の平均値（標準偏差）を表3.2に示した。各画像の総注視時間と合計注視時間をそれぞれ臨床経験年数別に1・4年目、5・9年目、10年目以上の3群で比較したが有意な差はなかった。

3.2.2 領域別注視時間

各画像の領域別注視時間の中央値（最大値・最小値）を臨床経験年数別に1・4年目、5・9年目、10年目以上の3群で比較したが有意差はなかった。各画像において注視時間の中央値（最大値・最小値）が最も長い領域を確認した。画像I（訪室時：病室全体）について、対象者全体では「吸引瓶」領域の416.7 (1200 - 100) msであった。臨床経験年数が異なる3群でみると、1・4年目では「吸引瓶」領域の533.3 (1200 - 100) ms、5・9年目では「患者の足元・ソファの上の布団」領域の500 (1633.3 - 100) ms、10年目以上では「酸素マスク」領域の766.7 (866.7 - 300) msであった。

画像II（ベッドサイド①）について、対象者全体では「顔」領域の400 (1500 - 100) msであった。臨床経験年数が異なる3群でみると、1・4年目では「顔」領域の383.4 (566.7 - 133.3) ms、5・9年目では「ナースコール」領域の400 (633.3 - 100) ms、10年目以上では「顔」領域533.3 (1500 - 133.3) msであった。

画像III（ベッドサイド②）について、対象者全体では「点滴刺入部・点滴ルート」領域の366.7 (600 - 100) msであった。臨床経験年数が異なる3群でみると、1・4年目では「点滴刺入部・点滴ルート」領域の366.7 (1000 - 100) ms、5・9年目では「顔・吸引チューブの箱」領域の366.7 (600 - 100) ms、10年目以上では「点滴刺入部・点滴ルート」領域の466.7 (1133.3 - 133.3) msであった。

画像IV（退室時：病室全体）について、対象者全体では「患者に足側・センサーマット」領域の350 (533.3 - 100) msであった。臨床経験年数が異なる3群でみると、1・4年目では「顔」領域の483.4 (666.7 - 300) ms、「患者の足側・センサーマット」領域の483.4 (500 - 400) ms、5・9年目では「患者の足側・センサーマット」領域の416.7 (533.3 - 300) ms、10年目以上では「点滴ボトル」領域の433.3 (733.3 - 133.3) msであった。
3.2.3 領域における注視人数

各画像の領域における注視をしている人数を表 3.3.1、表 3.3.2 に示した。各画像で注視している人数が最も多い領域を確認した結果、画像Ⅰ（訪室時：病室全体）について、対象者全体では「患者の足元・ソファの上の布団」領域 24 名（72.7%）であった。臨床経験年数が異なる 3 群でみると 1・4 年目では「患者の足元・ソファの上の布団」と「酸素マスク」領域がともに 9 名（81.8%）、5・9 年目では「患者の足元・ソファの上の布団」領域 8 名（66.7%）、10 年目以上では「患者の足元・ソファの上の布団」7 名（70%）であった。

画像Ⅱ（ベッドサイド①）について、対象者全体は「顔」領域 27 名（81.8%）であった。臨床経験年数が異なる 3 群でみると 1・4 年目では「顔」領域と「サチュレーションモニター」領域がともに 8 名（72.7%）、5・9 年目では「顔」領域と「ナースコール」領域がともに 10 名（83.3%）、10 年目以上では「顔」領域 9 名（90%）であった。

画像Ⅲ（ベッドサイド②）について、対象者全体では「点滴刺入部・点滴ルート」領域 23 名（69.7%）であった。臨床経験年数が異なる 3 群でみると 1・4 年目では「点滴刺入部・点滴ルート」領域 9 名（81.8%）、5・9 年目では「点滴刺入部・点滴ルート」領域 8 名（66.7%）、10 年目以上では「L字柵・ゴミ箱・コントローラー」領域 7 名（70%）であった。

画像Ⅳ（退室時：病室全体）について、対象者全体では「酸素マスク・中央配管」領域 27 名（81.8%）であった。臨床経験年数が異なる 3 群でみると 1・4 年目では「酸素マスク・中央配管」領域 9 名（81.8%）、5・9 年目では「酸素マスク・中央配管」領域 12 名（100%）、10 年目以上では「酸素マスク・中央配管」領域、「患者の足側・センサーマット」領域、「テレビ・柵・杖」領域、「窓・ソファ」領域がそれぞれ 6 名（60%）であった。
表 3.2 画像の総注視時間

<table>
<thead>
<tr>
<th></th>
<th>画像 I</th>
<th>画像 II</th>
<th>画像 III</th>
<th>画像 IV</th>
<th>画像 I~IV合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>M (SD)</td>
<td>M (SD)</td>
<td>M (SD)</td>
<td>M (SD)</td>
</tr>
<tr>
<td>全体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=33</td>
<td>1184.85 (573.38)</td>
<td>951.51 (471.15)</td>
<td>1033.32 (498.31)</td>
<td>1178.8 (517.23)</td>
<td>4348.47 (1712.05)</td>
</tr>
<tr>
<td>1-4年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=11</td>
<td>1136.09 (547.60)</td>
<td>1005.54 (357.27)</td>
<td>955.55 (390.16)</td>
<td>1063.87 (491.77)</td>
<td>4161.05 (1421.22)</td>
</tr>
<tr>
<td>5-9年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=12</td>
<td>1243.34 (453.37)</td>
<td>1303.30 (288.43)</td>
<td>1150.00 (470.62)</td>
<td>1156.67 (366.39)</td>
<td>4853.31 (858.62)</td>
</tr>
<tr>
<td>10年目以上</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n=10</td>
<td>1184.84 (759.99)</td>
<td>1077.76 (680.31)</td>
<td>1040.40 (648.12)</td>
<td>1130.30 (713.37)</td>
<td>4433.30 (2640.59)</td>
</tr>
</tbody>
</table>

単位 ms
表 3.3.1 各画像の領域別注視人数・注視時間

<table>
<thead>
<tr>
<th>画像Ⅰ</th>
<th>領域名</th>
<th>人数(%)</th>
<th>Median</th>
<th>Max-Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>全体 (n=33)</td>
<td>人数(%)</td>
<td>11 (33.3)</td>
<td>300.0</td>
<td>766.7-100.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>300.0</td>
<td>366.7</td>
<td>633.7-100.0</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>1200.0-100.0</td>
<td>266.7-100.0</td>
<td>1633.3-100.0</td>
</tr>
<tr>
<td></td>
<td>1-4年目 (n=11)</td>
<td>4 (36.4)</td>
<td>150.0</td>
<td>753.3-133.3</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>4 (36.4)</td>
<td>166.7</td>
<td>233.3</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>266.7-100.0</td>
<td>333.3-100.0</td>
<td>366.7-100.0</td>
</tr>
<tr>
<td></td>
<td>5-9年目 (n=12)</td>
<td>3 (25.0)</td>
<td>433.3</td>
<td>500.0-333.3</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2 (16.7)</td>
<td>433.3</td>
<td>233.3</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>1200.0-100.0</td>
<td>733.3-266.7</td>
<td>1633.3-100.0</td>
</tr>
<tr>
<td></td>
<td>10年以上 (n=10)</td>
<td>4 (40.0)</td>
<td>283.4</td>
<td>766.7-100.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>1 (10.0)</td>
<td>233.3</td>
<td>466.7</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>633.3-100.0</td>
<td>633.3-100.0</td>
<td>366.7-100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>画像Ⅱ</th>
<th>領域名</th>
<th>人数(%)</th>
<th>Median</th>
<th>Max-Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>全体 (n=33)</td>
<td>人数(%)</td>
<td>27 (81.8)</td>
<td>400.0</td>
<td>1500.0-100.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>19 (57.6)</td>
<td>333.3</td>
<td>633.3-100.0</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>1544.0-100.0</td>
<td>766.7-100.0</td>
<td>1633.3-100.0</td>
</tr>
<tr>
<td></td>
<td>1-4年目 (n=11)</td>
<td>8 (72.7)</td>
<td>383.4</td>
<td>566.7-133.3</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>8 (72.7)</td>
<td>233.4</td>
<td>266.7</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>766.7-100.0</td>
<td>366.7-100.0</td>
<td>366.7-100.0</td>
</tr>
<tr>
<td></td>
<td>5-9年目 (n=12)</td>
<td>10 (83.3)</td>
<td>183.4</td>
<td>833.3-100.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>6 (50.0)</td>
<td>333.3</td>
<td>200.0</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>666.7-100.0</td>
<td>433.3-100.0</td>
<td>633.3-100.0</td>
</tr>
<tr>
<td></td>
<td>10年以上 (n=10)</td>
<td>9 (90.0)</td>
<td>533.3</td>
<td>1500.0-133.3</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5 (50.0)</td>
<td>333.3</td>
<td>283.3</td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>633.3-100.0</td>
<td>633.3-233.3</td>
<td>466.7-100.0</td>
</tr>
</tbody>
</table>

注）人数(%)は、全体および各群が各画像の領域を注視していた人数とその割合(%)を示す。Median（中央値）は、各画像の領域において全体および各群の注視をしていた者の注視時間（ms）の中央値を示す。Max - Minは、全てのデータを基にした注視時間（ms）の最大値と最小値を示す。

仮設は、各画像の領域において、全体および各群で最も多く注視していた人数(%)と、最も長い注視時間(ms)を示す。"-"は該当するデータがないことを示す。
表 3.3.2 各画像の領域別注視人数・注視時間

<table>
<thead>
<tr>
<th>画像Ⅲ</th>
<th>領域名</th>
<th>顔</th>
<th>サチュレーティョンモニター奥側の睾</th>
<th>酸素マスク</th>
<th>ナースコール</th>
<th>患者の左手</th>
<th>ティッシュ</th>
<th>点滴針差部</th>
<th>ティッシュ</th>
<th>テレビ</th>
<th>コンセプト</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>全体 (n=33)</td>
<td>人数(%)</td>
<td>17 (51.5)</td>
<td>6 (18.2)</td>
<td>8 (24.2)</td>
<td>10 (30.3)</td>
<td>14 (42.4)</td>
<td>23 (69.7)</td>
<td>20 (60.6)</td>
<td>11 (33.3)</td>
<td>10 (30.3)</td>
<td>200.0</td>
<td>233.3</td>
<td>133.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>300.0</td>
<td>116.7</td>
<td>233.3</td>
<td>150.0</td>
<td>166.7</td>
<td>366.7</td>
<td>200.0</td>
<td>233.3</td>
<td>133.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>600.0-100.0</td>
<td>333.3-100.0</td>
<td>600.0-100.0</td>
<td>433.3-100.0</td>
<td>600.0-100.0</td>
<td>1133.3-100.0</td>
<td>466.7-100.0</td>
<td>633.3-100.0</td>
<td>666.7-100.0</td>
<td></td>
</tr>
<tr>
<td>1-4 年目 (n=11)</td>
<td>人数(%)</td>
<td>6 (54.5)</td>
<td>1 (9.1)</td>
<td>2 (18.2)</td>
<td>4 (36.4)</td>
<td>5 (45.5)</td>
<td>9 (81.8)</td>
<td>7 (63.6)</td>
<td>3 (27.3)</td>
<td>3 (27.3)</td>
<td>300.0</td>
<td>333.3</td>
<td>266.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>350.0</td>
<td>133.3</td>
<td>183.3</td>
<td>183.4</td>
<td>166.7</td>
<td>366.7</td>
<td>166.7</td>
<td>333.3</td>
<td>266.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>466.7-233.3</td>
<td>—</td>
<td>233.3-133.3</td>
<td>233.3-100.0</td>
<td>233.3-100.0</td>
<td>1000.0-100.0</td>
<td>300.0-100.0</td>
<td>633.3-166.7</td>
<td>333.3-100.0</td>
<td></td>
</tr>
<tr>
<td>5-9 年目 (n=12)</td>
<td>人数(%)</td>
<td>5 (50.0)</td>
<td>3 (30.0)</td>
<td>4 (40.0)</td>
<td>2 (20.0)</td>
<td>5 (50.0)</td>
<td>6 (60.0)</td>
<td>7 (70.0)</td>
<td>4 (40.0)</td>
<td>4 (40.0)</td>
<td>300.0</td>
<td>100.0</td>
<td>316.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>300.0</td>
<td>100.0</td>
<td>383.3</td>
<td>200.0</td>
<td>100.0</td>
<td>466.7</td>
<td>200.0</td>
<td>316.7</td>
<td>116.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>366.7-100.0</td>
<td>333.3-100.0</td>
<td>600.0-200.0</td>
<td>300.0-100.0</td>
<td>600.0-100.0</td>
<td>1133.3-133.3</td>
<td>266.7-100.0</td>
<td>566.7-200.0</td>
<td>500.0-100.0</td>
<td></td>
</tr>
</tbody>
</table>

表 3.3.2 各画像の領域別注視人数・注視時間

<table>
<thead>
<tr>
<th>画像Ⅳ</th>
<th>領域名</th>
<th>顔</th>
<th>サチュレーティョンモニター奥側の睾</th>
<th>酸素マスク</th>
<th>ナースコール</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>全体 (n=33)</td>
<td>人数(%)</td>
<td>10 (30.3)</td>
<td>3 (9.1)</td>
<td>27 (81.8)</td>
<td>16 (48.5)</td>
<td>11 (33.3)</td>
<td>9 (27.3)</td>
<td>12 (36.4)</td>
<td>17 (51.5)</td>
<td>16 (48.5)</td>
<td>200.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>300.0</td>
<td>200.0</td>
<td>333.3</td>
<td>316.7</td>
<td>266.7</td>
<td>133.3</td>
<td>350.0</td>
<td>266.7</td>
<td>200.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>666.7-133.3</td>
<td>333.3-100.0</td>
<td>1100.0-100.0</td>
<td>800.0-100.0</td>
<td>733.3-100.0</td>
<td>266.7-100.0</td>
<td>533.3-100.0</td>
<td>1233.3-100.0</td>
<td>666.7-100.0</td>
<td></td>
</tr>
<tr>
<td>1-4 年目 (n=11)</td>
<td>人数(%)</td>
<td>2 (18.2)</td>
<td>0 (0)</td>
<td>9 (81.8)</td>
<td>7 (63.6)</td>
<td>5 (45.5)</td>
<td>2 (18.2)</td>
<td>4 (36.4)</td>
<td>6 (54.5)</td>
<td>4 (36.4)</td>
<td>250.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>483.4</td>
<td>—</td>
<td>300.0</td>
<td>300.0</td>
<td>266.7</td>
<td>133.3</td>
<td>483.4</td>
<td>283.4</td>
<td>250.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>666.7-300.0</td>
<td>—</td>
<td>1100.0-200.0</td>
<td>800.0-100.0</td>
<td>733.3-100.0</td>
<td>133.3-133.3</td>
<td>500.0-400.0</td>
<td>366.7-100.0</td>
<td>300.0-100.0</td>
<td></td>
</tr>
<tr>
<td>5-9 年目 (n=12)</td>
<td>人数(%)</td>
<td>3 (25.0)</td>
<td>2 (16.7)</td>
<td>12 (100.0)</td>
<td>6 (50.0)</td>
<td>3 (25.0)</td>
<td>2 (16.7)</td>
<td>2 (16.7)</td>
<td>5 (41.7)</td>
<td>6 (50.0)</td>
<td>166.7</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>333.3</td>
<td>266.7</td>
<td>350.0</td>
<td>133.3</td>
<td>166.7</td>
<td>416.7</td>
<td>333.3</td>
<td>166.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>366.7-233.3</td>
<td>333.3-200.0</td>
<td>733.3-100.0</td>
<td>666.7-133.3</td>
<td>233.3-100.0</td>
<td>533.3-300.0</td>
<td>800.0-100.0</td>
<td>333.3-100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 年以上 (n=10)</td>
<td>人数(%)</td>
<td>5 (50.0)</td>
<td>1 (10.0)</td>
<td>6 (60.0)</td>
<td>3 (30.0)</td>
<td>3 (30.0)</td>
<td>5 (50.0)</td>
<td>6 (60.0)</td>
<td>6 (60.0)</td>
<td>6 (60.0)</td>
<td>233.4</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>200.0</td>
<td>100.0</td>
<td>266.7</td>
<td>266.7</td>
<td>433.3</td>
<td>100.0</td>
<td>166.7</td>
<td>200.0</td>
<td>233.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max-Min</td>
<td>466.7-133.3</td>
<td>—</td>
<td>866.7-100.0</td>
<td>433.3-166.7</td>
<td>733.3-133.3</td>
<td>266.7-100.0</td>
<td>533.3-100.0</td>
<td>1233.3-133.3</td>
<td>366.7-133.3</td>
<td></td>
</tr>
</tbody>
</table>

注）人数(%)は、全体および各群が各画像の領域を注視していた人数とその割合(%)を示す。Median（中央値）は、各画像の領域において全体および各群の注視をしていた者の注視時間(ms)の中央値を示す。Max-Minは、全てのデータ範囲として注視時間が(ms)の最大値と最小値を示す。

選択率は、各画像の領域において、全体および各群で最も多く注視していた人数(%)と、最も長い注視時間(ms)を示す。「」は該当するデータがないことを示す。
3.3 思考内容

発話時間は平均 13 分 30 秒（最小 9 分、最大 20 分 30 秒）であった。

発話内容は繰り返し読み込み 926 個の発話単位に分かれた。発話単位は観察内容と思考内容に分けた。観察内容は 58 種類に分かれて、内容の類似性に沿って分類した。分類した観察内容は、新人看護職員研修ガイドライン（改訂版）（2014）の技術的側面として挙げられている項目名を参考に、≪転倒・転落防止≫≪酸素吸入療法・吸引≫≪療養生活環境整備≫≪患者自身≫≪安楽な体位の保持≫≪点滴静脈内注射・輸液≫≪ナースコール≫の 7 つの観察カテゴリーに分類した。思考内容は、研究の枠組みを参考に【確認・状況判断】【推論】【ケア決定】の 3 つの思考過程に分類した。思考過程から【確認・状況把握】【推論】【ケア決定】≪直感的ケア決定≫の 4 つの類型を見いだした。

【確認・状況把握】は、観察内容について見たと発話しているもの、位置や状況を把握する【確認・状況把握】段階の思考にとどまった発話単位と定義した。

【推論】は、観察内容について【確認・状況把握】したことを解釈したり、予測したりする【推論】段階につながる思考過程をたどる発話単位と定義した。

【ケア決定】は、【確認・状況把握】して、【推論】を働かせ、患者に実施する【ケア決定】につながる思考過程をたどる発話単位と定義した。

【直感的ケア決定】は、【確認・状況把握】して、【推論】の思考過程がなく、患者に実施する【ケア決定】につながっている思考過程をたどる発話単位と定義した。

3.3.1 観察カテゴリー別の発話単位数と全発話単位数に占める割合

模擬患者・模擬病室画像の観察カテゴリーごとに発話単位数と全発話単位数に占める割合（%）を表 3.4 に示した。

全発話単位数に占める割合が最も高い観察カテゴリーは、対象者全体では≪酸素吸入療法・吸引≫18.7%、次いで≪療養生活環境整備≫17.5%≪転倒・転落防止≫17.3%であった。全発話単位数に占める割合が最も高い観察カテゴリー臨床経験年数別にみると、1 年目では≪転倒・転落防止≫23.5%、2 - 4 年目では≪患者自身≫18.8%、5 - 9 年目では≪酸素吸入療法・吸引≫19.6%、10 年目以上では≪療養生活環境整備≫18.3%であった。

全発話単位数に占める割合が最も低い観察カテゴリーは、≪ナースコール≫の対象者全体 8.1%、1 年目 7.5%、2 - 4 年目 7.9%、5 - 9 年目 8.3%、10 年目以上 8.3%と、≪点滴静脈内注射・輸液≫の 2 - 4 年目 7.9%であった。
3.3.2 観察カテゴリーの思考類型別, 発話人数・発話単位数の割合

観察カテゴリーごとの観察内容について, 【確認・状況把握型】 【推論型】 【ケア決定型】 【直感的ケア決定型】の 4 つの思考類型に分けて, 発話を行った人数, 発話単位数と, 全発話単位数に占める発話単位数の割合を示した（表 3.5.1〜3.5.7）。

4 つの思考類型について観察カテゴリーごとに結果を示す。

1）≪転倒・転落防止≫（表 3.5.1）

≪転倒・転落防止≫では, 全ての対象者が 8 種類の観察内容のうち, いずれか 1 つ以上の発話をしていた。最多発話している観察内容は＜コールマット＞26 名, 47 発話単位, 次いで＜L字柵＞22 名, 46 発話単位, ＜柵＞20 名, 33 発話単位であった。

【確認・状況把握型】で発話があった観察内容で, 全発話単位数に占める発話単位数の割合が 50%を超えるものは, 1 年目が＜コールマット＞＜柵＞＜杖＞＜スリッパ＞＜足元＞＜コールマットのスイッチ＞, 2 - 4 年目が＜コールマット＞＜柵＞＜杖＞＜足元＞, 5 - 9 年目が＜コールマット＞＜柵＞＜杖＞＜スリッパ＞＜足元＞＜手前＞, 10 年目以上は, ＜コールマット＞＜柵＞＜柵がない＞であった。

【推論型】で発話があった観察内容で, 全発話単位数に占める発話単位数の割合が 50%を超えるものは 1 年目が＜L字柵＞, 2 - 4 年目が＜コールマット＞＜スリッパ＞, 5 - 9 年目が＜L字柵＞＜足元＞, 10 年目以上が＜L字柵＞＜杖＞＜スリッパ＞であった。

【ケア決定型】で発話があった観察内容で全発話単位数に占める発話単位数の割合は, ＜L字柵＞の 2 - 4 年目 33.3%と 5 - 9 年目 20.0%であった。

【直感的ケア決定型】では, 発話はなかった。

2）≪酸素吸入療法・吸引≫（表 3.5.2）

≪酸素吸入療法・吸引≫では, 全ての対象者が 10 種類の観察内容のうち, いずれか 1 つ以上の発話していた。最多発話している観察内容は＜サチュレーション＞32 名, 48 発話単位, 次いで＜酸素マスク＞30 名, 62 発話単位, ＜吸引器＞24 名, 36 発話単位であった。

【確認・状況把握型】で発話があった観察内容で, 全発話単位数に占める発話単位数の割合が 50%を超えるものは, 1 年目が＜酸素マスク＞＜サチュレーションモニター＞＜吸引器＞＜酸素流量計＞＜吸引チューブの箱＞, 2 - 4 年目が＜酸素マスク＞＜サチュレーションモニター＞＜酸素流量計＞＜吸引チューブの箱＞＜吸引器のチューブ＞, 5 - 9 年目が＜サチュレーションモニター＞＜吸引器のチューブ＞, 10 年目以上が＜吸引器のチューブ＞である。

45
ー＞＜吸引器＞＜酸素流量計＞＜吸引チューブの箱＞＜酸素マスクのチューブ＞＜酸素を装着していない＞，10年目以上が＜酸素マスク＞＜サチュレーションモニター＞＜吸引器＞＜酸素流量計＞＜吸引チューブの箱＞＜吸引器のチューブ＞であった。

【推論型】で発話があった観察内容で，全発話単位数に占める発話単位数の割合が50%を超えるものは，1年目がなし，2-4年目が＜吸引器＞，5-9年目が＜酸素マスク＞＜吸引器のチューブ＞，10年目以上がなしであった。

【ケア決定型】で発話があった観察内容で全発話単位数に占める発話単位数の割合は，1年目が＜酸素マスク＞7.1%，2-4年目がなし，5-9年目が＜吸引器＞8.3%，10年目以上が＜サチュレーションモニター＞20.0%であった。

【直感的ケア決定型】で発話があった観察内容で全発話単位数に占める発話単位数の割合は，10年目以上の＜サチュレーションモニター＞6.7%であった。

3) ≪療養生活環境整備≫（表3.5.3.1，表3.5.3.2）

≪療養生活環境整備≫では，32名が21種類の観察内容についていずれか1つ以上発話していった。最も多く発話しているのは＜全体＞18名 38発話単位，次いで＜周囲＞＜ゴミ箱＞14名 30発話単位であった。

【確認・状況把握型】で発話があった観察内容で，全発話単位数に占める発話単位数の割合が50%を超えるものは，1年目が＜全体＞＜周囲＞＜ゴミ箱＞＜テレビ＞＜布団＞＜コード＞＜棚・床頭台＞＜ベッドコントローラー＞＜ベッドストッパー＞，2-4年目が＜全体＞＜周囲＞＜テレビ＞＜布団＞＜ベッドコントローラー＞，5-9年目が＜全体＞＜周囲＞＜布団＞＜ソファの上の布団＞＜ソファ＞と，＜ベッド＞や＜ベッドコントローラー＞などベッド周囲に関する観察内容，10年目以上が＜全体＞＜周囲＞＜テレビ＞＜コード＞＜棚・床頭台＞＜ベッドコントローラー＞＜ベッドの高さ＞＜窓＞＜ルーバー＞＜中心＞であった。

【推論型】で発話があった観察内容で，全発話単位数に占める発話単位数の割合が50%を超える観察内容は，1年目がなし，2-4年目が＜ゴミ箱＞＜布団＞，5-9年目が＜ゴミ箱＞＜テレビ＞＜コード＞＜コンセント＞＜窓＞＜隙間＞，10年目以上が＜ゴミ箱＞＜テレビ＞＜コード＞＜コンセント＞であった。

【ケア決定型】で発話があった観察内容で，全発話単位数に占める発話単位数の割合は，5-9年目の＜ベッドの頭側＞50.0%と，10年目以上的＜周囲＞12.5%であった。

【直感的ケア決定型】で発話があった観察内容で，全発話単位数に占める発話単位数の割合は，
5-9年目の＜棚・床頭台＞33.3%，10年目以上の＜全体＞6.3%＜布団＞50.0%であった。

4）≪患者自身≫（表3.5.4）

≪患者自身≫では、全ての対象者が5種類の観察内容についていずれか1つ以上の発話をしていた。最も多く発話している観察内容は＜顔＞31名 91発話単位、次いで＜患者＞14名 29発話単位であった。

【確認・状況把握型】で発話があった観察内容で、全発話単位数に占める発話単位数の割合が50%を超えるものは、1年目が＜顔＞＜患者＞＜枕＞、2-4年目が＜顔＞＜患者＞、5-9年目が＜頭＞＜寝衣＞、10年目以上が＜顔＞＜頭＞であった。

【推論型】で発話があった観察内容で、全発話単位数に占める発話単位数の割合が50%を超えるものは1年目・2-4年目がなし、5-9年目が＜顔＞＜頭＞、10年目以上が＜患者＞であった。

【ケア決定型】で発話は見られなかった。

【直感的ケア決定型】で発話があった観察内容は5-9年目の＜患者＞8.3%、＜枕＞25.0%であった。

5）≪安楽な体位の保持≫（表3.5.5）

≪安楽な体位の保持≫では、全ての対象者が7種類の観察内容のいずれか1つ以上の発話をしていた。最も多く発話している観察内容は＜体の下のティッシュ＞28名 61発話単位、次いで＜体位＞13名 19発話単位、＜上半身＞12名 21発話単位であった。

【確認・状況把握型】で発話があった観察内容で、全発話単位数に占める発話単位数の割合が50%を超えるものは、1年目が＜上半身＞＜体位＞＜足＞、2-4年目が＜上半身＞＜体位＞、5-9年目が＜体の下のティッシュ＞＜体位＞、10年目以上が＜体の下のティッシュ＞＜体位＞＜足＞＜肩＞＜右手＞であった。

【推論型】で発話があった観察内容で、全発話単位数に占める発話単位数の割合が50%を超えるものは1年目が＜体の下のティッシュ＞、2-4年目が＜体の下のティッシュ＞、5-9年目が＜上半身＞＜足＞、10年目以上が＜上半身＞＜足＞であった。

【ケア決定型】で発話があった観察内容で、全発話単位数に占める発話単位数の割合は5-9年目の＜体位＞12.5%、＜体位＞33.3%、＜全身＞100%であった。

【直感的ケア決定型】で発話があった観察内容で、全発話単位数に占める発話割合は10年目以上の中＜体位＞12.5%のみであった。
6）《点滴静脈内注射・輸液》（表 3.5.6）

《点滴静脈内注射・輸液》では、全ての対象者が 7 種類の観察内容について、いずれか 1 つ以上の発話をしていた。最も多く発話している観察内容は＜点滴ボトル＞26 名 36 発話単位、次いで＜点滴刺入部＞25 名 40 発話単位であった。

【確認・状況把握型】で発話があった観察内容で、全発話単位数に占める発話単位数の割合が 50%を超えるものは、1 年目が＜点滴刺入部＞＜点滴ボトル＞＜点滴ルート＞＜クレンメ＞＜点滴を探す＞、2 - 4 年目が＜点滴刺入部＞＜点滴ボトル＞、5 - 9 年目が＜点滴ルート＞、10 年目以上が＜点滴刺入部＞＜点滴ボトル＞＜点滴ルート＞＜点滴がない＞＜左手＞であった。

【推論型】で発話があった観察内容で、全発話単位数に占める発話単位数の割合が 50%を超えるものは、1 年目・2 - 4 年目がなし、5 - 9 年目が＜点滴刺入部＞＜点滴ボトル＞、10 年目以上が＜左手＞であった。

【ケア決定型】で発話があった観察内容で全発話単位数に占める発話単位数の割合は、5 - 9 年目の＜点滴ボトル＞7.1%，＜点滴ルート＞12.5%であった。

【直感的ケア決定型】についての発話はなかった。

7）《ナースコール》（表 3.5.7）

《ナースコール》の 1 種類の観察内容＜ナースコール＞では全ての対象者が発話していた。

【確認・状況把握型】で発話があり、全発話単位数に占める発話単位数の割合が 50%を超えたのは、1 年目・2 - 4 年目・10 年目以上であった。

【推論型】では、全発話単位数に占める発話単位数の割合が 50%を超えたのは 5 - 9 年目のみであった。

【ケア決定型】で発話があった観察内容＜ナースコール＞の全発話単位数に占める発話単位数の割合は、2 - 4 年目 12.5%，5 - 9 年目 7.1%，10 年目以上 4.2%であった。

【直感的ケア決定型】で発話があった観察内容＜ナースコール＞は 7.1%であった。
表 3.4 臨床経験年数別、観察カテゴリの発話単位数と全発話単位数に占める割合（％）

<table>
<thead>
<tr>
<th>臨床経験年数</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>全体</td>
<td>1年目</td>
<td>2-4年目</td>
<td>5-9年目</td>
<td>10年目以上</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
</tr>
<tr>
<td></td>
<td>n=33</td>
<td>n=7</td>
<td>n=4</td>
<td>n=12</td>
<td>n=10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>926</td>
<td>200</td>
<td>101</td>
<td>336</td>
<td>289</td>
<td>160</td>
<td>47</td>
<td>53</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>38</td>
<td>18</td>
<td>66</td>
<td>51</td>
<td>17.3</td>
<td>23.5</td>
<td>15.8</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>173</td>
<td>29</td>
<td>18</td>
<td>66</td>
<td>51</td>
<td>18.7</td>
<td>19.0</td>
<td>19.6</td>
<td>17.6</td>
</tr>
<tr>
<td></td>
<td>162</td>
<td>27</td>
<td>18</td>
<td>62</td>
<td>53</td>
<td>17.5</td>
<td>14.5</td>
<td>18.5</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>139</td>
<td>20</td>
<td>19</td>
<td>48</td>
<td>45</td>
<td>15.0</td>
<td>13.5</td>
<td>14.3</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>20</td>
<td>13</td>
<td>39</td>
<td>42</td>
<td>12.3</td>
<td>10.0</td>
<td>11.6</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>24</td>
<td>8</td>
<td>40</td>
<td>31</td>
<td>11.1</td>
<td>12.0</td>
<td>11.9</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>15</td>
<td>8</td>
<td>28</td>
<td>24</td>
<td>8.1</td>
<td>7.5</td>
<td>8.3</td>
<td>8.3</td>
</tr>
</tbody>
</table>

網掛けは総合発話単位数の割合が 50%以上を占めるものを示す。
表3.5.1 観察カテゴリの思考類型別発話人数・発話単位（％）：転倒・転落防止

<table>
<thead>
<tr>
<th>観察内容</th>
<th>図像全体</th>
<th>確認・状況把握型</th>
<th>推論型</th>
<th>ケア決定型</th>
<th>直感的ケア決定型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>人数</td>
<td>発話単位数</td>
<td>人数</td>
<td>発話単位数</td>
<td>人数</td>
</tr>
<tr>
<td>全体</td>
<td>33</td>
<td>160</td>
<td>30</td>
<td>93</td>
<td>58.1</td>
</tr>
<tr>
<td>1年目</td>
<td>7</td>
<td>47</td>
<td>7</td>
<td>35</td>
<td>74.5</td>
</tr>
<tr>
<td>2年目</td>
<td>4</td>
<td>17</td>
<td>4</td>
<td>10</td>
<td>58.8</td>
</tr>
<tr>
<td>5年目</td>
<td>12</td>
<td>53</td>
<td>10</td>
<td>29</td>
<td>54.7</td>
</tr>
<tr>
<td>10年目以上</td>
<td>10</td>
<td>43</td>
<td>9</td>
<td>19</td>
<td>44.2</td>
</tr>
<tr>
<td>コールマット</td>
<td>全体</td>
<td>26</td>
<td>47</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>1年目</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>10</td>
<td>76.9</td>
</tr>
<tr>
<td>2年目</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td>5年目</td>
<td>9</td>
<td>16</td>
<td>7</td>
<td>12</td>
<td>75.0</td>
</tr>
<tr>
<td>10年目以上</td>
<td>9</td>
<td>16</td>
<td>7</td>
<td>9</td>
<td>56.3</td>
</tr>
<tr>
<td>L字柵</td>
<td>全体</td>
<td>23</td>
<td>46</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>1年目</td>
<td>6</td>
<td>14</td>
<td>4</td>
<td>8</td>
<td>57.1</td>
</tr>
<tr>
<td>2年目</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>5年目</td>
<td>9</td>
<td>15</td>
<td>3</td>
<td>4</td>
<td>26.7</td>
</tr>
<tr>
<td>10年目以上</td>
<td>6</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>21.4</td>
</tr>
<tr>
<td>柵</td>
<td>全体</td>
<td>20</td>
<td>33</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>1年目</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>80.0</td>
</tr>
<tr>
<td>2年目</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>85.7</td>
</tr>
<tr>
<td>5年目</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>55.6</td>
</tr>
<tr>
<td>10年目以上</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>71.4</td>
</tr>
<tr>
<td>枝</td>
<td>全体</td>
<td>10</td>
<td>12</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1年目</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>2年目</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>66.7</td>
</tr>
<tr>
<td>5年目</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>75.0</td>
</tr>
<tr>
<td>10年目以上</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>スリッパ</td>
<td>全体</td>
<td>10</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1年目</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>66.7</td>
</tr>
<tr>
<td>2年目</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5年目</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>66.7</td>
</tr>
<tr>
<td>10年目以上</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>足元</td>
<td>全体</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1年目</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>2年目</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5年目</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10年目以上</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>手前</td>
<td>全体</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1年目</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>2年目</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5年目</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10年目以上</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

粗掛行は総合発話単位数の割合が50%以上を占めるものを示す。
表 3.5.2 観察カテゴリーの思考型別発話人数・発話単位数（％）: 酸素吸入療法・吸引

<table>
<thead>
<tr>
<th>触媒内容</th>
<th>画像全体</th>
<th>酸素吸入療法・吸引</th>
<th>酸素マスク</th>
<th>サチュレーションモニタ</th>
<th>吸引器</th>
<th>酸素流量計</th>
<th>吸引チューブの箱</th>
<th>吸引器のチューブ</th>
<th>酸素マスクのチューブ</th>
<th>酸素を装着していない</th>
<th>吸引器のルート</th>
<th>中央配管</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>口述人数</td>
<td>発話単位数</td>
<td>口述人数</td>
<td>発話単位数</td>
<td>口述人数</td>
<td>発話単位数</td>
<td>口述人数</td>
<td>発話単位数</td>
<td>口述人数</td>
<td>発話単位数</td>
<td>口述人数</td>
<td>発話単位数</td>
</tr>
<tr>
<td>四年目</td>
<td>18</td>
<td>12</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>五年目</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>六年目</td>
<td>22</td>
<td>18</td>
<td>18</td>
<td>14</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>七年目</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>16</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>八年目</td>
<td>26</td>
<td>22</td>
<td>22</td>
<td>18</td>
<td>18</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>九年目</td>
<td>28</td>
<td>24</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>十年目</td>
<td>30</td>
<td>26</td>
<td>26</td>
<td>22</td>
<td>22</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

小括内は統合発話単位数の割合が50%以上を占めるものを示す.
表3.5.3.1 視察カテゴリーの思考類型別発話人数・発話単位（％）：療養生活環境整備

<table>
<thead>
<tr>
<th>視察カテゴリー</th>
<th>画面全体</th>
<th>確認-状況把握型</th>
<th>推定型</th>
<th>ケア決定型</th>
<th>直感的ケア決定型</th>
</tr>
</thead>
<tbody>
<tr>
<td>療養生活環境整備</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全体</td>
<td>32</td>
<td>162</td>
<td>30</td>
<td>115</td>
<td>20</td>
</tr>
<tr>
<td>1年目</td>
<td>7</td>
<td>29</td>
<td>7</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>2-4年目</td>
<td>3</td>
<td>18</td>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>5-9年目</td>
<td>12</td>
<td>62</td>
<td>10</td>
<td>38</td>
<td>9</td>
</tr>
<tr>
<td>10年目以上</td>
<td>10</td>
<td>53</td>
<td>10</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>全体</td>
<td>18</td>
<td>38</td>
<td>17</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>1年目</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>2-4年目</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>5-9年目</td>
<td>9</td>
<td>16</td>
<td>8</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>10年目以上</td>
<td>6</td>
<td>16</td>
<td>6</td>
<td>15</td>
<td>93.8</td>
</tr>
<tr>
<td>周囲</td>
<td>16</td>
<td>30</td>
<td>17</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>1年目</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>100.0</td>
</tr>
<tr>
<td>2-4年目</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>77.8</td>
</tr>
<tr>
<td>5-9年目</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>55.6</td>
</tr>
<tr>
<td>10年目以上</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>75.0</td>
</tr>
<tr>
<td>コミ箱</td>
<td>14</td>
<td>20</td>
<td>8</td>
<td>10</td>
<td>50.0</td>
</tr>
<tr>
<td>1年目</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>83.3</td>
</tr>
<tr>
<td>2-4年目</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-9年目</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>37.5</td>
</tr>
<tr>
<td>10年目以上</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>40.0</td>
</tr>
<tr>
<td>テレビ</td>
<td>12</td>
<td>13</td>
<td>7</td>
<td>7</td>
<td>53.8</td>
</tr>
<tr>
<td>1年目</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>2-4年目</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>5-9年目</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>10年目以上</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>50.0</td>
</tr>
<tr>
<td>布団</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>60.0</td>
</tr>
<tr>
<td>1年目</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>100.0</td>
</tr>
<tr>
<td>2-4年目</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td>5-9年目</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>50.0</td>
</tr>
<tr>
<td>10年目以上</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td>コード</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>7</td>
<td>63.6</td>
</tr>
<tr>
<td>1年目</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>85.7</td>
</tr>
<tr>
<td>2-4年目</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-9年目</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10年目以上</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>50.0</td>
</tr>
</tbody>
</table>

*網掛けは総合発話単位数の割合が50%以上を占めるものを示す."
<table>
<thead>
<tr>
<th>観察内容</th>
<th>臨床経験年数</th>
<th>異常全体</th>
<th>確認・状況把握型</th>
<th>推論型</th>
<th>ケア決定型</th>
<th>直感的ケア決定型</th>
</tr>
</thead>
<tbody>
<tr>
<td>棟・床頭台</td>
<td>全体</td>
<td>6 6</td>
<td>4 4</td>
<td>66.7</td>
<td>1 1</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5〜9年目</td>
<td>3 3</td>
<td>1 1</td>
<td>33.3</td>
<td>1 1</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>2 2</td>
<td>2 2</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>ベッドコントローラー</td>
<td>全体</td>
<td>2 2</td>
<td>1 1</td>
<td>50.0</td>
<td>1 1</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>1 1</td>
<td>- -</td>
<td>-</td>
<td>1 1</td>
<td>100.0</td>
</tr>
<tr>
<td>ソファの上の布団</td>
<td>全体</td>
<td>2 2</td>
<td>1 1</td>
<td>50.0</td>
<td>1 1</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>1 1</td>
<td>- -</td>
<td>-</td>
<td>1 1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>5〜9年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>コンセント</td>
<td>全体</td>
<td>2 3</td>
<td>- -</td>
<td>-</td>
<td>2 3</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>5〜9年目</td>
<td>1 1</td>
<td>- -</td>
<td>-</td>
<td>1 1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>1 2</td>
<td>- -</td>
<td>-</td>
<td>1 2</td>
<td>100.0</td>
</tr>
<tr>
<td>ベッド</td>
<td>5〜9年目</td>
<td>3 3</td>
<td>2 2</td>
<td>66.7</td>
<td>1 1</td>
<td>33.3</td>
</tr>
<tr>
<td>ベッドストッパー</td>
<td>全体</td>
<td>2 2</td>
<td>2 2</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5〜9年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>ベッドの頭側</td>
<td>5〜9年目</td>
<td>1 2</td>
<td>1 1</td>
<td>50.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>ベッドの下</td>
<td>5〜9年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>ベッドの高さ</td>
<td>全体</td>
<td>4 6</td>
<td>4 5</td>
<td>83.3</td>
<td>1 1</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>5〜9年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>3 5</td>
<td>3 4</td>
<td>80.0</td>
<td>1 1</td>
<td>20.0</td>
</tr>
<tr>
<td>窓</td>
<td>全体</td>
<td>4 4</td>
<td>3 3</td>
<td>75.0</td>
<td>- -</td>
<td>1 1 25.0</td>
</tr>
<tr>
<td></td>
<td>5〜9年目</td>
<td>2 2</td>
<td>1 1</td>
<td>50.0</td>
<td>1 1 33.3</td>
<td>- -</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>2 2</td>
<td>2 2</td>
<td>100.0</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>チューブ・ルート</td>
<td>全体</td>
<td>3 3</td>
<td>3 3</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5〜9年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>2 2</td>
<td>2 2</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>中心</td>
<td>10年目以上</td>
<td>1 2</td>
<td>1 2</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>環境</td>
<td>5〜9年目</td>
<td>1 1</td>
<td>1 1</td>
<td>100.0</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>風間</td>
<td>5〜9年目</td>
<td>1 2</td>
<td>1 1</td>
<td>50.0</td>
<td>1 1 50.0</td>
<td>- -</td>
</tr>
</tbody>
</table>

*頭掛けは総合発話単位数の割合が50%以上を占めるものを示す。

表3.5.3.2 視察カテゴリーの思考類型別発話人数・発話単位 (%) : 療養生活環境整備 2
表3.5.4 観察カテゴリーの思考類型別発話人数・発話単位（%）：患者自身

<table>
<thead>
<tr>
<th>観察内容</th>
<th>臨床経験年数</th>
<th>全体</th>
<th>確認・状況把握型</th>
<th>推論型</th>
<th>ケア決定型</th>
<th>直感的ケア決定型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>人数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>発話単位数</td>
</tr>
<tr>
<td>患者自身</td>
<td>1年目以上</td>
<td>12</td>
<td>48</td>
<td>23</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-4年目</td>
<td>4</td>
<td>19</td>
<td>4</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5-9年目</td>
<td>12</td>
<td>48</td>
<td>23</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>10</td>
<td>45</td>
<td>9</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>全体</td>
<td>全体</td>
<td>33</td>
<td>139</td>
<td>29</td>
<td>86</td>
<td>33</td>
</tr>
<tr>
<td>1年目</td>
<td>全体</td>
<td>7</td>
<td>27</td>
<td>7</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>2-4年目</td>
<td>全体</td>
<td>4</td>
<td>19</td>
<td>4</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>5-9年目</td>
<td>全体</td>
<td>12</td>
<td>48</td>
<td>23</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10年目以上</td>
<td>全体</td>
<td>10</td>
<td>45</td>
<td>9</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>頭全体</td>
<td>全体</td>
<td>14</td>
<td>29</td>
<td>10</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>1年目</td>
<td>全体</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2-4年目</td>
<td>全体</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5-9年目</td>
<td>全体</td>
<td>4</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10年目以上</td>
<td>全体</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>枕全体</td>
<td>全体</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>1年目</td>
<td>全体</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2-4年目</td>
<td>全体</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5-9年目</td>
<td>全体</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10年目以上</td>
<td>全体</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>顔全体</td>
<td>全体</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>1年目</td>
<td>全体</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-4年目</td>
<td>全体</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*網掛けは総合発話単位数の割合が50%以上を占めるものを示す。
表 3.5.5 観察カテゴリの思考類型別発話人数・発話単位（%）：安楽な体位の保持

<table>
<thead>
<tr>
<th>観察内容</th>
<th>臨床経験年数</th>
<th>画像全体</th>
<th>画像実体</th>
<th>確認-状況把握型</th>
<th>推論型</th>
<th>体位</th>
<th>ケア決定型</th>
<th>直感的ケア決定型</th>
</tr>
</thead>
<tbody>
<tr>
<td>安楽な体位の保持</td>
<td>全体</td>
<td>32</td>
<td>114</td>
<td>27</td>
<td>67</td>
<td>38.8</td>
<td>22</td>
<td>43</td>
</tr>
<tr>
<td>1年目</td>
<td>6</td>
<td>20</td>
<td></td>
<td>6</td>
<td>16</td>
<td>80.0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2-4年目</td>
<td>4</td>
<td>13</td>
<td>10</td>
<td>3</td>
<td>10</td>
<td>76.9</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5-9年目</td>
<td>12</td>
<td>39</td>
<td></td>
<td>9</td>
<td>18</td>
<td>46.2</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>10年目以上</td>
<td>10</td>
<td>42</td>
<td></td>
<td>9</td>
<td>23</td>
<td>54.8</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>体の下のティッシュ</td>
<td>全体</td>
<td>28</td>
<td>61</td>
<td>21</td>
<td>40</td>
<td>65.6</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>1年目</td>
<td>5</td>
<td>11</td>
<td></td>
<td>4</td>
<td>9</td>
<td>81.8</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2-4年目</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>57.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5-9年目</td>
<td>10</td>
<td>24</td>
<td></td>
<td>7</td>
<td>14</td>
<td>58.3</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10年目以上</td>
<td>9</td>
<td>19</td>
<td></td>
<td>7</td>
<td>13</td>
<td>68.4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>上半身</td>
<td>全体</td>
<td>12</td>
<td>21</td>
<td>7</td>
<td>8</td>
<td>38.1</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>1年目</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-4年目</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-9年目</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>25.0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>10年目以上</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>30.0</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>体位</td>
<td>全体</td>
<td>13</td>
<td>19</td>
<td>8</td>
<td>12</td>
<td>62.2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1年目</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>75.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-4年目</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-9年目</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>66.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10年目以上</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>37.5</td>
<td>4</td>
<td>4</td>
<td>50.0</td>
</tr>
<tr>
<td>足</td>
<td>全体</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>44.4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1年目</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>75.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5-9年目</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>10年目以上</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>50.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>腰</td>
<td>全体</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10年目以上</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>右手</td>
<td>全体</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-9年目</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*下枠の発話単位数は総合発話単位数の割合が50%以上を占めるものを示す。
表 3.5.6 観察カテゴリーの思考類型別発話人数・発話単位（％）：点滴静脈内注射・輸液

<table>
<thead>
<tr>
<th>観察内容</th>
<th>ご臨床経験年数</th>
<th>画像全体</th>
<th>確認・状況把握型</th>
<th>推論型</th>
<th>ケア決定型</th>
<th>直感的ケア決定型</th>
</tr>
</thead>
<tbody>
<tr>
<td>点滴静脈内注射</td>
<td>全体</td>
<td>33</td>
<td>103</td>
<td>25</td>
<td>60</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>7</td>
<td>24</td>
<td>6</td>
<td>17</td>
<td>70.8</td>
</tr>
<tr>
<td></td>
<td>2-4年目</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td>5-9年目</td>
<td>12</td>
<td>40</td>
<td>8</td>
<td>17</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>10</td>
<td>31</td>
<td>8</td>
<td>19</td>
<td>61.3</td>
</tr>
<tr>
<td>点滴挿入部</td>
<td>全体</td>
<td>25</td>
<td>40</td>
<td>17</td>
<td>20</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>2-4年目</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>5-9年目</td>
<td>10</td>
<td>18</td>
<td>6</td>
<td>6</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>7</td>
<td>11</td>
<td>5</td>
<td>6</td>
<td>54.5</td>
</tr>
<tr>
<td>点液ボトル</td>
<td>全体</td>
<td>26</td>
<td>36</td>
<td>18</td>
<td>21</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>2-4年目</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>5-9年目</td>
<td>10</td>
<td>14</td>
<td>6</td>
<td>6</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>8</td>
<td>66.7</td>
</tr>
<tr>
<td>点液ルート</td>
<td>全体</td>
<td>15</td>
<td>22</td>
<td>11</td>
<td>15</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>1年目</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>2-4年目</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>5-9年目</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>10年目以上</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>60.0</td>
</tr>
<tr>
<td>クレンメ</td>
<td>1年目</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>点液を探す</td>
<td>1年目</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>点液がない</td>
<td>10年目以上</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>左手</td>
<td>10年目以上</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

網掛けは総合発話単位数の割合が50%以上を占めるものを示す。
表3.5.7 観察カテゴリーの思考類型別発話人数・発話単位（%）：ナースコール

<table>
<thead>
<tr>
<th>観察内容</th>
<th>臨床経験年数</th>
<th>全体</th>
<th>画像全体</th>
<th>確認・状況把握型</th>
<th>推論型</th>
<th>ケア決定型</th>
<th>直感的ケア決定型</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>人数</td>
<td>発話単位数</td>
<td>人数</td>
<td>発話単位数</td>
<td>人数</td>
<td>発話単位数</td>
</tr>
<tr>
<td>ナースコール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-9年目</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10年目以上</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*網掛けは総合発話単位数の割合が50%以上を占めるものを示す。
3.3.3 思考過程の類型

思考内容を思考段階の関係から【確認・状況把握型】【推論型】【ケア決定型】【直感的ケア決定型】の4つ思考類型が見いだされた。以下に、観察カテゴリーごとの思考過程の類型に関する代表的データを挙げて説明する。

1) ≪転倒・転落防止≫に対する思考過程

【確認・状況判断型】は、＜L字柵＞についての発話から、＜L字柵＞や＜コールマット＞の存在を確認し、L字柵が開いていることやコールマットが離れている状況に気づく発話単位があった。

「マットとスリッパがあるなって思ってみました」（N27-1年目）
「離床センサーがあるなって」（N28-3年目）
「L字柵をみた」（N15-4年目，N14-5年目）
「コールマットの位置が離れているなって下を見たんです」（N9-19年目）
「柵がL字なんですねけど、開けっぱなんやって思いました」（N30-1年目）

【推論型】では、＜コールマット＞があることや位置を＜確認・状況把握＞し、患者の転倒リスクが高いことや、患者が自力で動くことが困難な可能性があることや、患者が一人で歩くことは危険であるのではないかと＜推論＞を働かせる発話があった。

＜L字柵＞では＜L字柵＞の存在によって患者が動ける状態、動きやすい状況にあると＜推論＞している発話があった。

「マットが敷いてあると思うて、ナースコールが押せない方なんかなあって思って、ちょっと転倒リスクが高そうで思ったより動けなさそうだなって思いまして」（N27-1年目）
「マット敷いてあるってことは、一人で歩くと危ない」（N15-4年目）
「コールマット敷いてある、勝手に歩いたら足下が離れている」（N18-6年目）
「コールマットがあることが、危ないんだなって思って、この最初の情報見たときは個室に入ってもらうちょっと自立して点滴棒押しながら歩ける人と思ったりけど、マットがあるってことは危ないなって、こんなふうに動いて転倒の危険があるんやって、個室だし怖いな」（N12-15年目）
「ADL自立されている方だってことなので、この状態からだったら、自分で起き
上がってスリッパがあるので行けそうやなって思いました」（N10 - 1年目）
「L字の柵が使えるくらいの、L字になっていれば動きやすい状態なんだから」
（N3 - 12年目）

さらに、＜L字柵＞が設置されていることを[確認・状況把握]し、患者の動きや次の行動を考え、危険の予測をするなどの[推論]している発話も見られた。
「三点柵やなっとは思ったりけど、L字バーまでちゃんとついてるから、まぁいいようにとったら整ってるんですけど、一人で動けてしまう環境にでもあよりそうって思いながら」（N24 - 7年目）
「支えがあれば動ける人なのか、それだけ危険があるんですけど」
（N12 - 15年目）

【ケア決定型】では、＜L字柵＞を含め柵の配置を確認し＜コールマット＞を使用していいる事も考慮したうえで、ベッド柵の配置を決定した[ケア決定]を行っていた。
「コールマットを設置しているような患者の場合、ベッド柵をつけておかないと転落したときに問題になる。自分だったら4点柵にすると思う。L字柵は起き上がりの時とか使いやすいが、転落の危険があるので、やはり4点柵にします」
（N21 - 6年目）

【直感的ケア決定型】に関する発話は見られなかった。

2) ≪酸素吸入療法・吸引≫に対する思考過程

【確認・状況把握型】では＜酸素マスク＞＜サチュレーション＞の場所や存在を[確認・状況把握]していた。
「酸素マスクがあるなんて」（N28 - 3年目）
「サチュレーションモニターついてるなあって、手に」（N21 - 6年目）

【推論型】では、＜酸素マスク＞が床頭台の上に置かれており患者に着用されていないことを[確認・状況把握]し、これまでの経過として酸素投与がされていた可能性を予測したり、酸素マスクの位置から今後使用する可能性を考慮するなどの[推論]を働かせていた。
また、＜サチュレーションモニター＞を着用していることを[確認・状況把握]して、肺
炎の病態や呼吸状態を予測しながら考慮し、さらにはモニタリングの必要性を指摘し続けていた。

「もしかしたら、結局呼吸状態悪くて酸素もしてたのかなって思って、結構重症、思ったより重症な人やと思いました」（N27 - 1年目）

「マスクそこに置いてあるんですけれど、すぐに使えるように置いてあるんか、すぐに使えるようにしては、ちょっと遠いかな」（N18 - 6年目）

「酸素はしていない。酸素はあったけど中止になったのかなって」（N8 - 22年目）

「モニターしとる。けど酸素もしていないし、抗生剤もしてる、そこで重症ではないような。酸素してないし、85歳で94%だったらしろとしてもキープできるんやったら軽症から中間かな、後で軽症やってイメージに変わった」（N14 - 5年目）

「持続で測っているのかなって思って、そこまで悪いのか」（N22 - 8年目）

「サチュレーションやっぱりモニタリングされているんだところ、訪室したときだけのサチュレーションの値だけじゃなくて持続でモニタリングが必要な状態なのか」（N3 - 12年目）

【ケア決定型】では、＜酸素マスク＞を今後使用する可能性を考慮し、すぐに使用できるように配置場所を考え設置する【ケア決定】を行っていた。

「マスクここれ置いてあるんやけど、また使用する可能性があるのかしれないので、酸素流量計のところにかけたりすることもできると思うので、もうちょっと片付けられるとしたら」（N10 - 1年目）

また、＜サチュレーションモニター＞の装着をしていることに対して、患者の苦痛が生じる可能性や、拘束することになる可能性を予測し、持続的に装着する必要性を考慮し、＜サチュレーションモニター＞の装着の変更や、計測方法の変更についての検討する【ケア決定】を行っていた。

「サチュレーションの機械があったので、ずっとモニタリングしているんだだって。しかも、でかいから本人にとっては痛いなんて、もっと小さいものにすればいいのにとって思って」（N12 - 15年目）

「酸素も外れているし、これいるんかな。拘束というか、いらないなら適宜の測
定でもいいのかなって、苦痛表情もないように見受け入り、顔色も悪くないので、一時楽になってフリーになるのかなって」（N3-12年目）

【直感的ケア決定型】では、＜サチュレーションモニター＞を患者の指から外したいと[ケア決定]を行っていた。
「きっとどうしてもこれ、サチュレーションモニターを外してあげたいんでしょうね」（N3-12年目）

3）≪療養生活環境整備≫に対する思考過程
【確認・状況把握型】では、ゴミ箱があることを[確認・状況把握]していた。
「ゴミ箱を見ていた」（N33-1年目）

【推論型】では、＜ゴミ箱＞の位置を[確認・状況把握]を行い、ゴミを捨てる行動を予測したり、痰の喀出を予測して場所の解釈など[推論]を行っていた。
「これはゴミ箱の位置はゴミを捨てやすい位置にはあるか」（N21-6年目）
「ゴミ箱とか見てたんですね、痰とか出やすいので、この近くにおいてあるなんかってくらいですかね」（N15-4年目）

【ケア決定型】では、＜周囲＞の[確認・状況把握]をして、患者の行動や動線を予測する[推論]を働かせ、環境整備を行うと[ケア決定]していた。
「本人ちょっとそっちのけで、周りをどう整えたら、動いたとき、気になって動いたときに、気になるものがないようにせんとあかんのかな」（N12-15年目）

【直感的ケア決定型】では、布団がめくれている状況を[確認・状況把握]して、布団を直すという[ケア決定]を行っていた。
「あえてめくってあるので、布団は後で直そうみたい」（N3-12年目）

4）≪患者自身≫に対する思考過程
【確認・状況把握型】では、＜顔＞から表情や顔色の[確認・状況把握]からをしていた。
「どんな表情されているのかっていうのを見ている」（N30-1年目）
【推論型】では、＜顔＞から表情や顔色などを【確認・状況把握】を行い、ADLの状態や、肺炎に関する症状の有無を予測するなど【推論】を働かせていた。

「表情ですかね。顔見てちょっと、思っていたよりもぐったりしていて、この表情だったら思ったより動けない状態かもしれない」 （N10 - 1年目）
「顔色、肺炎は少し落ち着いてコントロールできているのかな」 （N3 - 12年目）
「顔見たのは、なんか苦痛の表情とか呼吸苦いかなとか、顔色、チアノーゼとかそういう呼吸状態どんなかなっていう感じを中心に見て」

（N13 - 15年目）

【ケア決定型】に関する発話はみられなかった。

【直感的ケア決定型】では、＜枕＞からずれ落ちている患者の頭の状態を確認し即座に枕の位置を直そうという【ケア決定】を行っていた。

「枕を直そうと思った」 （N17 - 9年目）

5) ≪安楽な体位の保持≫に対する思考過程

【確認・状況把握型】では、＜体の下のティッシュ＞の場所や状況を【確認・状況把握】していた。

「ティッシュが下敷きになっとるって気づいて」 （N33 - 1年目）
「ティッシュがちょっと下まで挟まっている」 （N15 - 4年目）

【推論】では、＜体の下のティッシュ＞の位置から患者の苦痛を考慮し、臨床経験年数が長い10年目以上の看護師には患者の活動性を考慮し麻痺の可能性を考慮するなどの【推論】を働かせるものもいた。

「体の下になにか固いものが、ティッシュの箱やと思いまし、痛くないかな、苦痛じゃないかなということを思ってたんですかね。平気の？って」

（N20 - 9年目）

「ティッシュの箱も気になりましたね。どれだけの間、このティッシュを気にせずにすごされてきたのかと」 （N4 - 8年目）
「ティッシュがすごい気になっているて、ティッシュが肩の下に入ってて平気なんだろと、ずっとっんだなとか、それにしても置いたままみたいになっている」
のかとか、自分で動かないので、分かんないのかなとか、もしかしたら麻痺側なのかかなとか、左麻痺なのか、でも左麻痺側で柵があいていることはないとか、いろいろ思いながらティッシュの箱が気になっていると思います」

（N7 - 25年目）

【ケア決定型】では、＜体位＞を確認して、微妙な状態にあることを[推論]し、体位を直すといった[ケア決定]を行った。
「体位が微妙で、直してあげたい」 （N17 - 7年目）

【直感的ケア決定型】では、患者の体勢を[確認・状況把握]して体勢を直すという[ケア決定]を行っていた。
「体がずれ落ちているので、体勢を整えてから病室を出たい。」 （N3-12年目）

6) 《点滴静脈内注射・輸液》に対する思考過程

【確認・状況把握型】では、＜点滴刺入部＞の場所や固定状況や、＜点滴ボトル＞の場所、輸液内容の残量などの[確認・状況把握]を行っていた。
「点滴がなんだか、固定がえらい厳しいになっているなと思って」
（N1 - 5年目、N8 - 22年目）
「点滴が上から下がっとるんやって気づいて」 （N33 - 1年目）
「点滴が見えて、どんなな繋がっているのかって見て」 （N2 - 7年目）
「点滴が残りどのくらいあるのかっていうので見て」 （N20 - 9年目）

【推論型】では、＜点滴刺入部＞の固定状態が単純でないことに気づき、抑制されてい
る可能性やシーネ固定されている状況などを考慮し、固定状態から患者自身が点滴を自己
抜去する可能性を考えたり、《転倒・転落防止》カテゴリーの＜コールマット＞との関係
から危険行動の可能性を考慮するなどの[推論]を働かせていた。
「点滴を保護しているものなのか、抑制とかなのか、それか何枚も重ね着してい
るのかちょっとわからない」 （N10 - 1年目）
「えらい固定してはるなんっていうのは、たぶん、下の方はコールマットしてると
したら、この人、ちょっと今やばいかもしれないなあって思って。一人でなんか
しようとするけど、もしかしたら事故が起こりやすい危険がある人なんかない」
（N16 - 7年目）
「点滴が左末梢の手首に入って、シーネ固定されているから動きがしづらい、しこもそうなやと思って、何かついているかわからないんで、シーネとか気づくまで時間がかかったんやと思います」（N18 - 6年目）
「固定されるとんか、ただなってるんか、頑丈やそう、抜いたりする人なんかない」
（N9 - 19年目）

また、＜点滴ボトル＞が天井から釣り下がっていることから患者の活動範囲を予測し、拘束されている可能性も考慮したり、場所の適切性を考慮したりするなど[推論]を働かせていた。
「点滴が、点滴棒じゃなくてベッドの上につるしてあるってことで、ADLの状況がちょっと自分の歩くとかそういう行動ができない方がのなっていう風に感じました。なんか、ベッドのところに縛られているって、縛られているって言葉は悪いんですかけど」（N10 - 1年目）
「点滴もそこでいいのかなって、そんなところで見られるんかな」（N12 - 15年目）

【ケア決定型】では、＜点滴ルート＞を[確認・状況把握]して、挟まっていないか、患者が動いて抜けてしまうかもしれないなど[推論]を働かせて、点滴の刺入部を確認するとという[ケア決定]を行っていた。
「点滴のルートが、しっかりしているか、適切かとかですねとか、挟まったりしてないかとか、自身が動くことで抜けてしまうかとか、後で刺入部も確認しないといけないんだな」（N4 - 8年目）

【直感的ケア決定型】に関する発話は見られなかった。

7) ＜ナースコール＞に対する思考過程

【確認・状況把握型】では＜ナースコール＞の位置や場所を[確認・状況把握]していた。
「ナースコールの位置を見た」（N30 - 1年目、N29 - 20年目）

【推論型】では、＜ナースコール＞の位置を確認して、位置の適切性を考慮する[推論]を働かせていた。
「ナースコールが届くところにあるかなっていうのを見ました。大丈夫そうやなって、ここなら大丈夫かなって」（N27 - 1年目）
「ナースコールたぶん見とるんだと思います。押せる位置に置いてある」（N31 - 4年目）

【ケア決定型】では、＜ナースコール＞の位置を確認し、患者がナースコールを押すことができるのかを考慮し、＜コールマット＞が設置されていることも考慮しながら、＜ナースコール＞の位置を患者が押せるように変更する[ケア決定]を行っていた。

「ナースコールが遠いなってあたりで、コールマットが敷いてあるけど、転げて落ちてしまわないかなぁとか思いながら見ました。サチュレーションモニターがあるくらいならナースコールが手元にあたったらいいな」（N3 - 12年目）
「ナースコールが遠いなって思って見ていました。どうやって押すのかなって。右手にサチュレーションをしていると左手で握るのかとか、上にあるけどどうするのか。本人にどこなら押せるのか本人に聞いて配置すると思います」（N7 - 25年目）

【直感的ケア決定型】では、＜ナースコール＞を[確認・状況把握]し、手の届くところにした方がいいと[ケア決定]を行っていた。

「ナースコールは手の届くところにした方がいいんじゃないかな」（N14 - 5年目）
<table>
<thead>
<tr>
<th>観察カテゴリ別</th>
<th>思考類型</th>
<th>観察内容</th>
<th>代表的なデータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>転倒/転落防止</td>
<td>確認・状況把握型</td>
<td>＜L字柵＞</td>
<td>「欄が気になっているんだと思います。騒いでいるなって。」 (N27・1年目)</td>
</tr>
<tr>
<td>確認・状況把握型</td>
<td>＜コールマット＞</td>
<td>「マットとスリッパがあるあって思ってみた。」 (N27・1年目)</td>
<td></td>
</tr>
<tr>
<td>転倒/転落防止</td>
<td>推論型</td>
<td>＜L字柵＞</td>
<td>「三点欄やなっとは思ったり、L字バーまでちゃんとついてるから、気になるようにとったら整っているんです。」 (N24・7年目)</td>
</tr>
</tbody>
</table>
| 推論型 | ＜コールマット＞ | 「コールマットがあるかなって思ってみました。」 (N27・1年目)
| | | | 「マットとスリッパがあるのは、「地元の人が見えていない」「L字の中で人は動けない」」 (N9・19年目) |
| ケア決定型 | ＜L字柵＞ | 「コールマットを付けるような人やったら、欄を付けておまえじゃないと立ちたくなるとき問題になるし、4点欄にするかな」 (N21・6年目) |
| 直感的ケア決定型 | ＜酸素マスク＞ | 「マスクがあるなって」 (N28・3年目) |
| 確認・状況把握型 | ＜サチュレーションモニター＞ | 「酸素モニターもついてるなーって、手に」 (N21・6年目) |
| 推論型 | ＜酸素マスク＞ | 「マスクそこに置いてあるんですけど、すぐに使えるように置いてあるんか。すぐに使えるようにしては、ちょっと違いない」 (N18・6年目) |
| 推論型 | ＜サチュレーションモニター＞ | 「サチュレーションが長期的に搭載されているんだよね、訪問したときだけのサチュレーションの値だけじゃないって、整備でサチュレーションが必要な状態なのかと思っていたの」 (N3・12年目) |
| ケア決定型 | ＜酸素マスク＞ | 「マスクここに置いてあるんですけど、すぐに使えるように置いてあるんか、すぐに使えるようにしては、ちょっと違いない」 (N18・6年目) |
| 直感的ケア決定型 | ＜サチュレーションモニター＞ | 「サチュレーションが長期的に搭載されているんだよね、訪問したときだけのサチュレーションの値だけじゃないって、整備でサチュレーションが必要な状態なのかと思っていたの」 (N3・12年目) |
| ケア決定型 | ＜サチュレーションモニター＞ | 「マスク隣に置いてあるんですけど、すぐに使えるように置いてあるんか、すぐに使えるようにしては、ちょっと違いない」 (N18・6年目) |
| 直感的ケア決定型 | ＜サチュレーションモニター＞ | 「サチュレーションが長期的に搭載されているんだよね、訪問したときだけのサチュレーションの値だけじゃないって、整備でサチュレーションが必要な状態なのかと思っていたの」 (N12・15年目) |
| 輸液/吸収療法・吸引 | 確認・状況把握型 | ＜ゴミ箱＞ | 「ゴミ箱を見ています」 (N33・1年目) |
| 確認・状況把握型 | ＜ゴミ箱＞ | 「これだけ型ゴミ箱の位置で、ゴミが捨てやすい位置にあるのか」 (N21-6年目) |
| 推論型 | ＜ゴミ箱＞ | 「これだけ型ゴミ箱の位置で、ゴミが捨てやすい位置にあるのか」 (N21-6年目) |
| ケア決定型 | ＜ゴミ箱＞ | 「これからふんゴミ箱の位置で、ゴミは捨てやすい位置にあるのかって。」 (N21-6年目) |
| 直感的ケア決定型 | | | 「あえてめくってあるので、手付かずでじっとしている」 (N33・1年目) |

<table>
<thead>
<tr>
<th>観察カテゴリー</th>
<th>思考類型</th>
<th>観察内容</th>
<th>代表的なデータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>患者自身</td>
<td>確認・状況把握型</td>
<td>「どんな表情されるとのかっていう的を観察している」 (N30 - 1年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>推論型</td>
<td>「顔見たのは、なんか苦痛の表情とか呼吸苦ないかなと、顔色。チアノーゼとかそういう呼吸状態、どんなんかっていう感じを中心に行ったと思う」 (N13 - 15年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケア決定型</td>
<td>なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直感的ケア決定型</td>
<td>なし</td>
<td></td>
</tr>
<tr>
<td>安楽・体位の保持</td>
<td>確認・状況把握型</td>
<td>「ディッシュがちょっと頭まで挟まっている」 (N15 - 4年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>推論型</td>
<td>「体の下に何か柔らかいものが、ディッシュの箱やと思いました。痛くない？痛かないかということを思ってたんですかね。平気なの？」 (N20 - 9年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケア決定型</td>
<td>「体勢が整えばですね。直してください」 (N17 - 7年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直感的ケア決定型</td>
<td>「体勢が微妙ですね。直してあげたい。」 (N17 - 7年目)</td>
<td></td>
</tr>
<tr>
<td>点滴静脈注射・輸液</td>
<td>確認・状況把握型</td>
<td>「点滴がなんだか、固定されてるなと思って」 (N1 - 5年目, N8 - 22年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>推論型</td>
<td>「えらい固定してはるなっていうのは、たぶん、下の方はコールマットしてるとしたら、この人がちょっと今やるかもしれないなって思って、一人でなんか使用するけど、もしかしたら事故が起こりやすい危険がある人なんかって思いました」 (N16 - 7年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケア決定型</td>
<td>「点滅のルートがしっかりとしているか、適切かとかですね。抜まったりしてないかとか、 afterwardが設けていないかとか、後で刺入部も確認しないといけないんだなと。」 (N4 - 8年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直感的ケア決定型</td>
<td>なし</td>
<td></td>
</tr>
<tr>
<td>ナースコール</td>
<td>確認・状況把握型</td>
<td>「ナースコールの位置を観察している」 (N30 - 1年目, N29 - 20年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>推論型</td>
<td>「ナースコールたぶん見とるんだと思います、押せる位置に置いているのよ。」 (N31 - 4年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ケア決定型</td>
<td>「ナースコールは、手の届く位置にあったほうが良い」 (N14 - 5年目)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>直感的ケア決定型</td>
<td>なし</td>
<td></td>
</tr>
</tbody>
</table>
3.4 眼球運動データと思考内容の一致

模擬患者・模擬病室画像の観察時において，Talk Eye IIを用いて分析した注視箇所と，
発話思考法を用いてプロトコル分析をした観察カテゴリーに含まれる観察内容の発話単位
の一致について観察カテゴリーに分けて表3.7に示した。

3.4.1 注視箇所と発話単位の一致

各観察カテゴリーにおいて注視箇所と発話単位が一致した割合が50%を超えたものを
臨床経験年数別にみると，1年目では≪転倒・転落防止≫67.6%，≪酸素吸入療法・吸引≫
62.1%，≪患者自身≫52.9%，≪安楽な体位の保持≫85.7%，≪点滴静脈内注射・輸液≫
≪ナースコール≫70.0%の6つの観察カテゴリーであった。
2 - 4年目では≪転倒・転落防止≫50.0%，≪酸素吸入療法・吸引≫73.9%，≪患者自身≫
81.8%，≪点滴静脈内注射・輸液≫87.5%，≪ナースコール≫87.5%の5つの観察カテゴリーであった。5 - 9年目では≪転倒・転落防止≫67.6%，≪酸素吸入療法・吸引≫57.8%，
≪患者自身≫69.0%，≪安楽な体位の保持≫83.3%，≪点滴静脈内注射・輸液≫100%，≪
ナースコール≫71.4%の6つの観察カテゴリーであった。10年以上では≪患者自身≫
69.7%，≪安楽な体位の保持≫70.0%，≪点滴静脈内注射・輸液≫80.0%，≪ナースコール≫
72.2%の4つの観察カテゴリーであった。
≪療養生活環境整備≫については，全ての臨床経験年数で注視箇所と発話単位の一致が
50%以下であった。

3.4.2 注視一箇所あたりの発話単位数

注視箇所と発話単位が一致していたものについて，注視箇所あたりの平均発話単位数
で最多多いのは1年目では≪療養生活環境整備≫の2.3発話単位，2 - 4年目では≪転倒・
転落防止≫2.2発話単位，5 - 9年目では≪療養生活環境整備≫1.8発話単位，10年以上では
≪療養生活環境整備≫2.3発話単位であった。
注視箇所あたりの発話単位数で最も少ないのは，1年目では≪転倒・転落防止≫0.8
発話単位，2 - 4年目では≪酸素吸入療法・吸引≫と≪療養生活環境整備≫の0.8発話単位，
5 - 9年目では≪安楽な体位の保持≫0.9発話単位，10年以上では≪ナースコール≫1.0
発話単位であった。

68
表 3.7 臨床経験年数別、観察カテゴリの注視箇所と発話単位の一致割合（％）

<table>
<thead>
<tr>
<th>観察カテゴリ</th>
<th>画像全体</th>
<th>転倒・転落防止</th>
<th>酸素吸入療法・吸引</th>
<th>療養生活環境整備</th>
<th>患者自身</th>
<th>安楽な体位の保持</th>
<th>餐前特別な注射・輸液</th>
<th>ナースコール</th>
</tr>
</thead>
<tbody>
<tr>
<td>注視箇所数</td>
<td>発話単位数</td>
<td>発話単位数</td>
<td>注視箇所数</td>
<td>発話単位数</td>
<td>注視箇所数</td>
<td>発話単位数</td>
<td>注視箇所数</td>
<td>発話単位数</td>
</tr>
<tr>
<td>全数</td>
<td>n=33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一致数</td>
<td>574</td>
<td>936</td>
<td>119</td>
<td>160</td>
<td>155</td>
<td>173</td>
<td>82</td>
<td>162</td>
</tr>
<tr>
<td>一致割合（％）</td>
<td>59.2</td>
<td></td>
<td>57.1</td>
<td></td>
<td>58.7</td>
<td></td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>1年目</td>
<td>n=7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一致数</td>
<td>123</td>
<td>200</td>
<td>34</td>
<td>47</td>
<td>29</td>
<td>38</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>一致割合（％）</td>
<td>63.4</td>
<td></td>
<td>67.6</td>
<td></td>
<td>62.1</td>
<td></td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>2-4年目</td>
<td>n=14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一致数</td>
<td>51</td>
<td>58</td>
<td>11</td>
<td>5</td>
<td>11</td>
<td>22</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>一致割合（％）</td>
<td>68.9</td>
<td></td>
<td>50.0</td>
<td></td>
<td>73.9</td>
<td></td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>5-9年目</td>
<td>n=12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>一致数</td>
<td>198</td>
<td>336</td>
<td>34</td>
<td>53</td>
<td>64</td>
<td>66</td>
<td>29</td>
<td>62</td>
</tr>
<tr>
<td>一致割合（％）</td>
<td>121</td>
<td>143</td>
<td>12</td>
<td>23</td>
<td>26</td>
<td>11</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>一致数</td>
<td>61.1</td>
<td></td>
<td>57.8</td>
<td></td>
<td>57.8</td>
<td></td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>一致割合（％）</td>
<td>50.3</td>
<td></td>
<td>41.5</td>
<td></td>
<td>48.7</td>
<td></td>
<td>10.7</td>
<td></td>
</tr>
</tbody>
</table>

* 濃い網掛けは臨床経験年数別に一致割合が最も高いものを示す。薄い網掛けは、一致割合が50％以上のものを示す。
* 注視箇所の一致数は、注視箇所について観察カテゴリの観察内容の発話単位があった注視箇所数の割合を示す。
第4章 考察

4.1 眼球運動

4.1.1 技術取得レベルによる注視時間の傾向

模擬患者・模擬病室画像を観察した眼球運動の解析の結果、各画像の総注視時間、各画像の領域別注視時間には臨床経験年数による有意な差は見られなかった。これまでの看護学生の学年の違いや、臨床経験年数によって観察時の注視時間を比較した研究では、看護学生の上級学年や、臨床経験年数が長いものほど注視時間が長い傾向がみられている（大黒ら，2013; 河合，2000; 西方ら，2012）。

しかし、本研究では注視時間において臨床経験年数による差はなかった。本研究では患者設定として普段の社会生活を送る中で罹患する中高齢者や、様々な原疾患の合併症として多くみられる肺炎を発症している高齢者を模擬患者とし、より臨床場面に近い模擬病室を作り撮影した画像を使用した。さらに、実際に認定看護師が病室を訪れた場面を参考に画像提示時間を設定した。実験課題として観察目的は限定せず、対象者が自身が観察目的を考えながら観察していることから、日常的に行っている観察行動に近い状況で、短時間で瞬時に観察をすることが可能であると考える。また、対象者が自身が観察目的を考えながら観察しているため、注視している領域が対象者自身の観察目的を達成するように重要な観察項目である可能性と推察される。

また、時間制限による焦燥感の可能性を考慮し、実験前に課題とは別に患者が入院していない状況の病室を撮影した画像を実験プロトコルと同様に提示した。そのため、5秒ごとに画像が変わりその間に観察を行うことが出来、焦ることなく画像を観察することが出来たのではないかと考える。つまり、日常的に行う観察行動であれば、臨床経験年数が短い看護師であっても、臨床経験年数が長い看護師と同じように瞬時に観察をするための眼球運動を行うことが出来ると考える。

眼球運動の意図について西方ら（2012）は、臨床経験年数の長い看護師は観察意図をもって全身観察を行っているため注視時間が長く、一方臨床経験年数が短い看護師は注視時間に関係なく意図のない全身観察を行っている場合があることを報告している。また、危険予知教育後の眼球運動は教育前に比較すると危険因子の部位を長く見ている傾向があ
り，教育効果として危険因子となるものを見ようと意識し，じっくりよく見て危険であると判断していたことも報告されている（西村ら，2013）．しかし，本研究の注視時間の傾向だけでは観察の意図はできないため，例えば画像 II において 1・4 年目と 10 年目以上が共通して《顔》領域を最も長い時間注視しているものの，その意図がじっくりよく見て判断するため長い時間見ていたのか，なんとなく見ていただけなのかは不明である．さらに，注視した事からどのような判断を行い，次にどのような行動につなげているのかを明らかにする事は難しい．

4.1.2 領域における注視人数

各画像の領域で注視している人数を確認したところ，画像 I・II・IVにおいて，最も注視している人数が多い領域は 1・4 年目，5・9 年目，10 年目以上の全ての対象者で共通していた．画像 I は患者の病室に入った状態で病室全体が見えるような画像であり，画像のほぼ中心に位置する《患者の足元・ソファの上の布団》領域を注視している者も最も多かった．これは，眼を動かさずに眼に映る数々のオブジェクトの一部に注意を向ける潜在的注意の現象を働かせ（Findlay & Gilchrist，2003），病室全体を最初に大まかに把握していたのではないかと考える．

画像 II はベッドサイドで患者に近づいた画像であり，患者の《顔》領域を注視している者が多くみられた．西方ら（2012）の病室の観察についての研究においても，看護師の経験年数に関係なく共通して《顔》を注視しており，観察意図として【表情や顔色から状態を探るための観察】が報告されていた．本研究でも，85 歳女性で肺炎のため入院している患者の病室を訪れる設定であり，《顔》領域を注視することにより表情や顔色から患者の呼吸状態をはじめ全身的な状態を把握する意図が含まれているのではないかと考えられる．

画像 III は画像 II の状態から少し離れた画像であり 1・4 年目・5・9 年目は《点滴の刺入部・点滴ルート》領域，10 年目以上は《L 字柵・ゴミ箱・コントローラー》領域を注視している者が多いが，次いで《点滴刺入部・点滴ルート》領域を見ている者も多く見られた．大黒ら（2013）は，看護師は事前の患者情報から観察場面を予測し，危険予知行動として危険因子を意識した観察が行われている可能性を報告している．本研究でも患者が点滴治療を受けていることを画像提示前に模擬患者情報として提示しており，《点滴刺入部・点滴ルート》領域を注意が必要な領域としてとらえ，患者の状況を予測し意図的に注視が行われたのではないかと推測される．
画像Ⅳは退室前の状況として画像Ⅰと見える角度が少し変わり、点滴ボトルが見える病室全体の画像であり、「酸素マスク・中央配管」領域を注視している者が最も多く見られた。さらに、10年目以上は「患者の足側・センサーマット」領域、「テレビ・柵・杖」領域、「窓・ソファ」領域など病室全体を注視していた。大黒ら（2013）の報告では、臨床経験年数が長い看護師の病室全体に向けた注視の意図に【状態把握のために行うベッド周囲の観察】、【安全、快適な療養環境を配慮しての位置確認】、【身に付いた習慣的な確認】が含まれていた。本研究でも臨床経験年数10年目以上の対象者は、退室する前に病室全体的な確認を行うためにベッド周囲の観察を行っていた可能性も考えられる。

各画像の領域において注視をしていない領域や注視している者が少ない領域も見られている。その一例として、画像Ⅰの「サチュレーションモニター・奥側の柵」領域を1・4年目は誰も見ておらず、5・9年目は2名、10年目以上は1名と見ている者が少なかった。これは見落としが生じていることも考えられる。しかし、画像Ⅱでは「サチュレーションモニター」領域を注視しているものが1・4年目は8名、5・9年目は6名、10年目以上は5名と増えており、領域を観察するタイミングがある可能性も考えられる。これまで、看護師の注視行動が学生に比べて効率的に周辺視を用いて観察を行っている可能性があることや（中原ら, 2013）、手術室の看護師が手術の経過に合わせて観察している領域を変えていくことが報告されている（Ranieri et al., 2011）が報告されている。

本研究の場合、画像の流れに沿って画像Ⅰでは画像の中心部である「患者の足元・ソファの上の布団」領域を見ている者がすべての群で多く、潜在的注意の現象だけでなく周辺視の機能を働かせ全体把握を行っているのではないかと考える。画像Ⅱでは「顔」領域が多くの者が見ており、患者の状態を「顔」領域から把握しているのではないかと考える。画像Ⅲでは「点滴刺入部・点滴ルート」領域を多く見ており、画像確認前の模擬患者情報の確認時から「点滴刺入部・点滴ルート」領域を注意が必要な領域であることを推測し観察していたのではないかと考える。画像Ⅳでは「酸素マスク・中央配管」領域、「患者の足側・センサーマット」領域、「テレビ・柵・杖」領域、「窓・ソファ」領域など、病室全体の確認を行っているのではないかと考える。このことから、患者の病室を観察するには最初に周辺視の機能を働かせ全体把握を行い、観察が必要な領域の優先順位を決定していたのではないかと推察する。

しかし、注視の人数だけでは注視をしている場合、意図的に関心を持って見ていたのか、なんとなく見ていただけなのか等、注視をしたことに対する意図を明らかにするのはで
きない。

注視をしていない場合においても見落としの可能性も考えられる。また、模擬患者・模擬病室画像を1枚ずつ分析をしているため、観察するタイミングや観察パターンについては明らかにすることは難しい。

4.2 思考内容

4.2.1 模擬患者・模擬病室画像観察時の観察カテゴリー・観察内容に関する発話単位

全発話単位数に占める発話単位の割合で高い割合を占めた観察カテゴリーは、全体および各臨床経験年数で≪酸素吸入療法・吸引≫≪転倒・転落防止≫≪療養生活環境整備≫≪患者自身≫であった。

≪酸素吸入療法・吸引≫の観察内容には、＜酸素マスク＞＜吸引器＞など呼吸機能の障害に伴う呼吸症状に対する治療や検査、看護援助の際に必要な物品・医療機器が含まれている。≪転倒・転落防止≫の観察内容には、＜L字柵＞や＜コールマット＞など患者が転倒・転落しないようにする対策方法に関連する物品が含まれる。≪療養生活環境整備≫の観察内容には、＜全身＞や＜周囲＞のように療養生活環境を全体的にとらえるものや、＜ゴミ箱＞＜テレビ＞など療養生活環境に含まれる物品が含まれる。≪患者自身≫では、＜顔＞や＜患者＞と、患者自身のことが含まれている。本研究の模擬患者の設定を肺炎入院した85歳女性としている。そのため、肺炎に伴う呼吸症状に関する観察だけでなく、高齢者であることを含め転倒・転落の危険性を予測したり日常生活行動を予測した観察をしていた可能性が考えられる。

≪酸素吸入療法・吸引≫に含まれる観察内容で発話人数・発話単位数が多いものに＜サチュレーションモニター＞や＜酸素マスク＞が挙げられている。＜サチュレーションモニター＞について発話人数・発話単位数が多かった。その理由として、模擬患者情報で酸素飽和度が94%であったため＜サチュレーションモニター＞を装着している可能性を予測していたのではないかと考える、＜酸素マスク＞について発話人数・発話単位数が多いのは、模擬患者情報の情報収集時に肺炎で入院していること、酸素飽和度のデータなどから患者が酸素投与しているのかを予測していたため、観察を行ったのではないかと考える。

≪転倒・転落防止≫に含まれる観察内容で発話人数・発話単位数が多いものに＜コールマット＞＜L字柵＞が挙げられている。＜コールマット＞は患者がベッドから降りる時に足を下す場所に設置し、患者が確実に降りたことを検知するために使用される。通常、活動制限
がない場合の患者は自由にベッドから降り動くことができるが、ベッドから降りることで転倒・転落の危険性が予測される場合は＜コールマット＞を設置し、離床を検知したときに素早く対応できるように使用されている。＜L字柵＞は、L柵を閉じた状態で設置し、患者がベッドから降りる時にL字型に柵を折り曲げ、患者が座位を保持する時や立ち上がるとときにつかまりやすいように使用される。丸岡ら（2005）は、看護師が転倒防止策を決定するときの臨床判断を構成する要素として、患者を取り巻く環境、身体状況や認知状況を捉え、転倒発生の環境要因を排除することや転倒の原因となる行動を患者がとらないよう整えることをあげている。本研究において、模擬患者情報から患者の身体状況や認知状況を捉え、模擬患者・模擬病室画像内の観察から＜コールマット＞が設置されていることや＜L字柵＞が開いた状態で設置されていることから転倒防止策が決定されている環境であると捉えたのではないかと考える。転倒は医療事故・ヒヤリハットの報告において最も多く報告（公益財団法人日本医療機能評価機構 医療事故情報収集等事業 平成25年年報）されており、臨床場面で発生する可能性が高いといえる。特に高齢者は転倒の危険性も高く、本研究の模擬患者情報として85歳の高齢者を設定しており、対象者は事前に注意が必要であると考え観察を行っていたのではないかと考える。

≪療養生活環境整備≫の観察内容には、＜全体＞や＜周囲＞のように療養生活環境を全体的にとらえるものについて、発話人数・発話単位数が多い。患者が安心して治療を受けられることができ安楽に療養生活を送ることができるよう、療養環境は常に注意を払い整えることが看護師の重要な役割の一つであるためであると考える。観察内容の＜全体＞＜周囲＞について発話人数・発話単位数が多いということは、瞬時に全体把握を行い環境を捉えるための観察行動であったのではないかと考える。＜ゴミ箱＞は、肺炎患者の場合、咳痰に伴って喀出された痰をティッシュを使用し捨てる行動が予測され、ティッシュを捨てるために必要な物品であり観察を行っていたのではないかと考える。

≪患者自身≫の観察内容には、＜顔＞や＜患者＞と患者自身に関するものについて発話人数・発話単位数が多い。＜顔＞はフィジカルアセスメントの最初の観察項目としてあげられており、表情や顔色などからアセスメントを行うための観察を行っていたのではないかと考える。

斎藤（2001）は、目が正常に働いているだけでは見ることにならず、視覚的認知が生じるには、網膜から送られてくる情報を内容別に整理・処理する視覚中枢の働きが必要であると述べている。つまり、本研究で得られた模擬患者・模擬病室画像を観察している時
の視線軌跡を振り返りながら語られた発話単位は、視線を向けて“言った”という視覚的認知が視覚中枢で処理された結果であるといえる。しかし、視線を向けるということは、その観察内容に興味や関心があり注意を引き付けられた可能性が考えられる。そのため、発話人数・発話単位数が多い観察カテゴリー、観察内容は、本研究で示した肺炎を診断された高齢者の模擬病室を観察する場合、優先順位が高い観察内容である可能性が考えられる。

しかし、プロトコル分析を用いて観察内容の類似性から≪転倒・転落防止≫≪酸素吸入療法・吸引≫≪療養生活環境整備≫などの観察カテゴリーを抽出したが、発話単位の内容の意図が≪転倒・転落防止≫など観察カテゴリーに沿っているのか、どのような興味・関心を持っているのかを明らかにすることは難しい。

4.2.2 臨床経験年数の違いにおける模擬患者・模擬病室画像観察時の思考類型

模擬患者・模擬病室画像観察時において、観察カテゴリーに含まれる思考過程の段階の関係性を分析した結果、観察カテゴリーごとに【確認・状況把握型】【推論型】【ケア決定型】【直感的ケア決定型】の4つの思考類型がみだされた。

【確認・状況把握型】は、観察カテゴリーの観察内容において位置や状態、状況をとらえる思考段階にとどまっていた。これは、尾形（2012）が臨床判断の状況把握に焦点をあてケアについて決定する過程の特徴としてあげた【その場に入って対象者の力や変化に注目する】【この場で注目することの指標となる観点をとらえる】に相当する。しかし、【確認・状況把握】の思考段階から先に進み、さらに関心を深めたり次の観察につけたり、次の行動につなげるような発話は見られておらず、【確認・状況把握】の思考段階にとどまっていた。本研究では【確認・状況把握】した事の意味や意図について確認を行っていないため、単に“問題がない”“異常がない”といった判断を行ったのか、ただ目に入ったことを記憶していたのかなどを見極めることはできない。

【推論型】は、【確認・状況把握】したことを解釈したり、予測したりする「推論を働かせる思考段階であり、【確認・状況把握型】に比べると全発話単位数に占める発話単位数の割合が50%を超すもの少ないと考えられる。しかし、【推論型】の全発話単位数に占める発話単位数の割合が50%を超した臨床経験年数は、2-4年目、5-9年目、10年目以上であった。【ケア決定型】は【確認・状況把握】【推論】から患者に必要な【ケア決定】を実行している。【ケア決定型】の発話単位数は少なく、ほとんどが10%以下であり、発話単位がある臨床経験年数は、2-4年目、5-9年目、10年目以上であった。藤内ら（2008）は、新人看護師の健康歴聴
取場面における臨床判断のプロセスで、現象の一部のみに注目していることや、ケアの方法性を導けないことを示している。一方、Benner & Tannar (1987) は熟練した看護師は瞬時に観察を行い、パターン認識、類似認識、常識的理解、熟練した実践的な知識、重要点を感知する能力、そして熟練された合理性の能力を持ち合わせていることを示している。

本研究においても、新人看護師である1年目は【確認・状況把握型】の思考段階にとどまり、臨床経験年数が2-4年目、5-9年目、10年目以上では【推論型】【ケア決定型】と思考段階を進めているように、臨床経験年数が思考類型に影響したのではないかと考える。

しかし、発話思考法によって語られた発話内容だけでは【推論】に含まれる解釈や予測していることが、一つの観察内容から生じているものなのか、他の観察内容と合わせて複合的に考え語られたものなのかを明らかにすることはできない。

4.2.3 模擬患者・模擬病室画像観察時における観察カテゴリ別の推論の特徴

模擬患者・模擬病室画像観察時において、観察カテゴリ別に【推論】の思考内容に特徴があった。

≪転倒・転落防止≫では、＜コールマット＞や＜L字柵＞から転倒リスクや患者の行動を予測したり、【推論】を働かせ、転倒などの危険防止の【ケア決定】を行っていた。≪点滴静脈内注射・輸液≫では、＜点滴刺入部＞の固定が厳重にされており、そこから患者自身が点滴を抜去する危険性があることや、次の動きを予測して点滴が抜けてしまう危険性があることを【推論】していた。

≪転倒・転落防止≫では転倒の危険性、≪点滴静脈内注射・輸液≫では点滴を抜去してしまう危険性と、どちらも患者の危険性を【推論】する特徴があった。この思考内容はBenner et al. (1999, p.109) が示した臨床における先見性に含まれる“特別な疾患や傷害のある患者の危機、危険、脆さを予測する事”に相当し、患者の行動を予測し、危険防止に対する臨床判断を行っていたと考える。

≪患者自身≫≪酸素吸入療法・吸引≫では、＜顔＞や＜酸素マスク＞＜吸引器＞などから肺炎に関する症状の有無を予測したり、これまでの患者の経過を考慮し、今後の呼吸状態の経過を予測した【推測】を働かせ【ケア決定】を行っていた。本研究では模擬患者情報としている肺炎で入院した85歳の女性を設定しており、身体症状として重要である呼吸状態を、≪患者自身≫の＜顔＞や≪酸素吸入療法・吸引≫の＜サチュレーションモニター＞＜酸素マスク＞などから観察を行っている。Benner et al. (1999, p.186) は状態が不安定な患者
の生命維持機能の診断と管理に含まれる“重要だが緊急でない身体機能の不安定さを診断し、モニターし、予防し、管理すること”において看護師に求められるものとして、早期に異変を発見するための綿密なモニタリングと患者の不安定な状態がさらに悪化しないための方針を挙げている。本研究の模擬患者情報に含まれる身体状況は危機的で緊急を要するような状態ではないが、肺炎を診断された高齢者であり病状が悪化した場合も予測してケア決定を行っていたと考える。

《療養生活環境整備》《ナースコール》では、位置の「確認・状況把握」から、患者の行動を予測し適切な位置にあるか考慮し、[ケア決定]を行っていた。《療養生活環境整備》の＜ゴミ箱＞では、「ゴミ箱とか見てたんですかね。痰とか出やすいので、この近くにおいてあるんかなってくらいですかね」（N15・4年目）と、痰の喀出があるかもしれないと予測したり、痰を喀出したときに使用するティッシュを捨てるには適切な位置なのかと、《酸素吸入療法・吸引》で[推論]されている内容を併せて[推測]している特徴があった。

《ナースコール》では、「コールマットが敷いてあるけど、転げて落ちてしまわないかなと思いつつ見ました。サチュレーションモニターがあるくらいならナースコールが手元にあったほうがいい」（N3 - 12年目）と＜転倒・転落防止＞の＜コールマット＞で[推論]された転落する可能性と＜サチュレーションモニター＞が装着されていることを併せて、＜ナースコール＞が手元にあるようにと[ケア決定]が行われていた。

以上の事から、模擬患者・模擬病室観察時の観察カテゴリーに含まれる観察内容の[推論]

しかし、[確認・状況把握]から[推論]に思考過程がつながっている[推論型]の発話単位数が全発話単位数に占める割合で50%以上を超えるものは少ない。本研究では、より臨床場面に近づけるため、患者の病室に入るとの看護師の行動を参考に4つの模擬患者・模擬病室画像の提示時間を1つの模擬患者・模擬病室画像あたり5秒間、全体で20秒間と設定している。しかし、実際に臨床場面では患者の病室に入り観察したことから、さらに次の観察を行ったり、患者に声をかけて患者の状態を確認したりするなどの行動を行っている。そのため、本研究で提示した模擬患者・模擬病室画像の観察時間では瞬時の観察に近い状況であり、ほとんどの観察カテゴリーの観察内容において[確認・状況把握]する思考段階にとどまり、[推論]の思考には至らなかったのではないかと考える。

4.2.4 観察カテゴリー別、【ケア決定型】を示す観察内容の特徴

模擬患者・模擬病室画像観察時において、各観察カテゴリーで【ケア決定型】の思考類型を示す観察内容に特徴があった。

【転倒・転落防止】では＜L字柵＞について、【酸素吸入療法・吸引】では＜酸素マスク＞＜サチュレーションモニター＞＜吸引器＞について、【療養生活環境整備】では＜周囲＞＜ベッドの頭側＞について、【安宁な体位の保持】では＜上半身＞＜体位＞について、【ナースコール】では＜ナースコール＞について【ケア決定】の思考過程が行われていた。本研究で提示した模擬患者情報は85歳女性で、肺炎を診断されている。模擬患者・模擬病室画像では、L字柵が開いた状態でファウラー位を保持するためベッドの頭側と足側を突き上げているが、患者の上半身がずれ落ちて頭から少しずれ落ちて体位が崩れ、ナースコールは頭側に少し離れた場所に設置している状態である。そのため、酸素マスクなどの機器が装備されている可能性、転倒・転落の可能性、苦痛な体位の継続、ナースコールを押すことができないといった状況を容易に推測することができ、複雑に推論を働かせることなくケア決定を行ったのではないかと考える。泉ら（2006）は転倒予測の直観について、
直観の優れた看護師は転倒予測をひとつのパターンとして認知していることであると述べている。本研究においても、酸素マスクや吸引器が設置されていたり、L字柵が開いている状態、患者の上半身がずれ落ちている状態、ナースコールが離れた場所に設置されている状態に対してケアが必要な状態であるとパターンとして認知していたのではないかと考える。特に、ケア決定を行っていたのは2-4年目、5-9年目、10年目以上であり、臨床経験年数が長くなることによってパターンを認知し直感的にケアを決定することができる可能性も示唆される。

また、すべての観察カテゴリーで4つの思考類型があるわけではなく、観察カテゴリーや観察経過に応じて直観的にケアを決定できるものと、推論を深めて判断をする必要があるものがある可能性も考えられる。

4.2.5 発話思考法によって得られる思考内容、プロトコル分析の課題

模擬患者・模擬病室画像を観察している時の思考を発話思考法によって声に出して語ってもらい、プロトコル分析を行った。

その結果、発話人数や発話単位が多い観察カテゴリー、[推論]の特徴が見られた。これは視覚を用いた観察から始まる“データ駆動型処理”（Lindsay & Norman, 1977a）が行われている過程を示していると考える。つまり、発話思考法によって声に出して語られる内容は、模擬患者・模擬病室画像の視覚を用いて観察した事をきっかけに、患者に起こりうる危険性や、疾患に関する経過・症状の程度など[推論]の特徴にあるような分析・解釈を行っている過程を示す事が出来るといえる。

【ケア決定型】の思考類型では、観察したものをパターンとして認知し[ケア決定]を行っていた可能性が考えられる。これは、知識や経験などから期待したり仮説を立てたりする“概念駆動型処理”（Lindsay & Norman, 1977a）の過程を示していると考える。しかし、発話思考法によって声に出して語られる内容からは、どのような知識や経験を基にして、語られているかを示す事は出来ない。

発話思考法は「課題を達成する間に頭に浮かんだことをすべて声に出して語る」（海保,原田, 1993, p.82）方法であり、本研究において視覚による観察をきっかけに臨床判断の思考過程を明らかにすることが可能となった。しかし、臨床判断の思考過程の根拠や意図を示すためには、発話思考法によって語られた内容がどのような知識や経験を基に語られたものであるかをさらに調査をする必要がある。
4.3 眼球運動データと思考過程との一致

4.3.1 注視している領域が反映されている発話単位

各観察カテゴリーにおいて注視している領域が観察内容の発話単位に反映されているか、一致した割合から分析を行った。その結果、注視している領域と観察内容の発話単位が一致している割合が50%を超えた観察カテゴリーは、1年目、2-4年目、5-9年目は6カテゴリ、10年目以上は4カテゴリと、10年目以上が他の臨床経験年数よりも少なかった。1つの注視箇所に対する発話単位数は、臨床経験年数別の違いが見られなかった。

注視している領域が観察内容の発話単位と一致している場合、注視している領域を反映させて観察内容について発話していることを示している。つまり、注視している領域が観察内容の発話単位に一致している観察カテゴリーは、視覚を用いて観察したことが思考過程につながった領域であるといえる。

注視している領域と観察内容の発話単位の一致が最も多い観察カテゴリーは、「点滴静脈内注射・輸液」であった。「点滴静脈内注射・輸液」は、患者が適切に治療を受けることができるように管理する必要があり、確実に観察を行い確認するため、新人看護職員研修ガイドライン（2014）にもチェックリストが示されている。そのため、日常的に視覚による観察している状況と同様の観察によって、確実に[確認・状況把握]を行いその際の思考について発話していたのではないかと考える。

注視している領域と観察内容の発話単位の一致が最も少ない観察カテゴリーは「療養生活環境整備」であった。一注視あたりの発話単位数は最も多かった。「療養生活環境整備」は、患者の病室全体の環境を示した内容であり、視対象を中心窪でとらえるというより、周辺視野機能を働かせて全体的な状況把握を行っていた可能性が考えられる。一注視あたりの発話単位数が多いということは、一つの事について様々な考えを巡らせていることを示していると考える。「療養生活環境整備」の場合、注視している領域との一致の有無を問わず周辺視野機能による観察からも思考を巡らせていたのではないかと考える。

臨床経験年数別にみると、10年目以上は他の臨床経験年数の対象者に比べ、注視している領域と観察内容の発話単位の一致の割合がどの観察カテゴリにおいても低い割合であった。Benner（1984, pp.26-29）が示した看護師の技術習得モデルにおける達人レベルは、自分の状況把握を適切な行動に結びつけるためには分析的な原則を頭にすることなく、一つひとつの状況を直観的に把握して正確な問題領域に的を絞ると報告している。Lindsay & Norman（1977a）は感覚器から入る情報処理過程の一つに、知識、経験、記憶などから
期待したり仮説を立てたことから情報処理が始まり, 感覚器を用いて刺激を確認し解釈・理解する“概念駆動型処理”を示している。このことから, 注視している領域が観察内容の発話単位と一致していない場合, 10年目以上と臨床経験年数が長いものは経験や知識が豊富であり, 注視はないが患者の状況を素早く直感的に状況把握していた可能性も考えられる。また, 視覚機能として臨床経験年数が10年目以上の対象者は注視だけでなく周辺視野機能を働かせ思考につなげる可能性が示唆される。

一方, 臨床経験年数が1年目と少ないものは知識や経験が少ないので, 目の前にある状況を[確認・状況把握]することにとどまり, 十分に思考を働かせるまでに至らず“見過ごし”“見落とし”といった観察の誤りにつながる可能性が考えられる。注視している領域が観察内容の発話単位に一致しなかったということは, 視覚的には十分認知可能と思われる物理的刺激を検出できない“非注意による見落とし”（横澤ら, 2003）や, 見て知っているが特に問題にしないでそのままにする“見過ごし”が生じている可能性が考えられる。また, 人の記憶過程に含まれる再構成には, 偽りの構成としてでっちあげ（fabrications）を導く可能性が問題とされている（Lindsay & Norman, 1977b）。注視がなく観察内容の発話単位があったものは, 記憶の中で偽りの再構成が生じている可能性も考えられる。

また, 人間の目の構造として注視すべき視対象は高い解像力を持つ網膜の中心窩でとらえているが, 中心窩だけでなく周辺網膜も低解像ではあるが大まかなもののが把握する視覚情報処理が行われている（福島, 2001）。そのため視野は広く, 周辺網膜でとらえた視対象を中心窩でとらえるため目を素早く動かすサッケードが生じている。そのため, 注視している箇所と観察内容の発話単位が一致していない場合にでも視対象を中心窩でとらえる前に周辺視野機能を働かせ, 直感的に状況把握を行っていた可能性も考えられる。

本研究では, 注視している領域を反映した観察内容の思考にどのような意味や意図を持っているかを明らかにしていない。しかし, 視覚カテゴリーによる思考類型の特徴や, 臨床経験年数による特徴がみられていることから, 注視している領域を反映した観察内容の発話単位においても同様に特徴があるのではないかと考える。

4.3.2 看護教育への応用

医療の高度化, 医療技術の進歩に伴い医療者が実施する技術が多様化し, かつ複雑なものとなってきている。そのため, 実際に臨床現場で技術を実施する前に, シミュレーション
シミュレーション教育による学習が行われはじめている。医療者教育におけるシミュレーション教育は「臨床の事象を、学習要素に焦点化して再現した状況の中で、学習者が人やものにかかわりながら医療行為やケアを経験し、その経験を学習者が振り返り検証することによって、専門的な知識・技術・態度の統合を図ることをめざす教育(学習)」（阿部, 2013）であると定義されている。

本研究で示した模擬患者・模擬病室画像は臨床の事象を再現した状況であり、この画像を観察しさらに観察時に考えたことを振り返った実験手順は、シミュレーション教育と同様である。眼球運動計測装置を用いて客観的に記録する方法では、対象者がどこを見ていたのかを第三者も知ることができるため、観察力を高めるための看護教育方法や観察力の評価に活用することができると考える。しかし、視覚による観察だけでは、視覚によって観察されていることからどのように考えているかを明らかにすることができない。

これまで、視覚による観察から考えたことを話し合う教育方法の一つとして、危険予知トレーニングが行われている。しかし危険予知トレーニングの場合、画像提示を行っている時間は長く実際の瞬時に行っている観察とは異なる状況となっていることや、危険因子に特化しているため、危険因子以外の状況をどのように観察しどのように考え危険ではないと判断しているのかを教育することは難しい。

本研究で実施した模擬患者・模擬病室画像を観察している時の視線軌跡をきっかけとして観察時の思考内容を声に出して語る発話思考法は、客観的に示された視覚による観察から何を観察して、どのように考えているのかを客観的に示すことができ、さらに戸惑いなどを知ることができることができる。

本研究で実施した視覚を用いた観察をきっかけに発話思考法によって思考を語る方法は、看護師の思考過程を知ることができ評価が可能となり、観察した看護師自身も思考過程を振り返り自己評価ができ、観察力や臨床推論能力を高めるための教育方法としても活用できるのではないかと考える。

しかし、臨床判断の思考過程の根拠や意図までは示す事出来ないため、今後どのような知識や経験を基に思考を働かせたものなのかをさらに調査をする必要があると考える。さらに、臨床場面で起こる様々な状況の課題を本研究の実験手順を活用した教育方法を検討する必要がある。
第 5 章　総論

5.1 総括

本論文は看護師の病室観察時における視覚に基づく臨床判断の構造を明らかにすることを目的に、視覚を用いた観察と観察時の思考過程を併せてデータ収集する混合研究法による研究計画を立案し分析を行った。

病室観察における看護師の眼球運動の傾向の分析では、臨床経験年数別によって「総注視時間」や注視している領域の注視時間、注視の有無に差は見られなかった。このことから、看護師は臨床経験年数による眼球運動の違いはないことが明らかになった。しかし、観察領域によって注視時間に違いがあり、観察が必要な領域の優先順位を決定している可能性が示唆された。

看護師の病室観察時の視覚に基づいた思考内容についての分析では、視覚に基づいた視る思考内容には【確認・状況把握】、【推論】、【ケア決定】の思考過程から、【確認・状況把握型】、【推論型】、【ケア決定型】、【直感的ケア決定型】の 4 つの思考類型に分かれた。

観察カテゴリー別に≪転倒・転落防止≫の思考過程には危険を予測する内容が多く、≪安楽な体位の保持≫の思考過程では患者の苦痛を考慮する内容が多く示されるなどの特徴が見られた。また、観察カテゴリーに含まれる観察内容に≪転倒・転落防止≫、≪安楽な体位≫、≪ナースコール≫では【ケア決定型】の思考類型があるが、他の観察カテゴリーには見られていないなど、観察カテゴリーによって思考類型を変えていく可能性が示唆された。

看護師が病室観察時の視覚観察が思考内容に反映されている割合の分析では、7 つの観察カテゴリーのうち最も多い割合を占めたものは≪点滴静脈内注射・輸液≫で、最も少ない割合を占めたものは≪療養生活環境整備≫であった。

これらの結果から示される、看護師の視覚に基づく臨床判断の構造を示した（図 5.1）。看護師は視覚を用いて観察する時に注視することから始めている。

視覚を用いた観察は、100ms 以上視点を停留する注視の状態と、視点が停留していない注視なしの状態に分かれた。注視の状態は網膜にある中心窩で観察対象物を捉えた中心視であり、注視なしの状態は網膜の周辺部でとらえた周辺視である可能性がある。

視覚を用いた観察内容について、発話ありの場合と発話なしの場合に分かれた、発話は
思考内容を示すものであり発話があった場合、発話内容に含まれる思考過程に沿って【確認・状況把握型】【推論型】【ケア決定型】【直感的ケア決定型】の4つの思考類型に分かれた。

臨床判断時の思考過程として【確認・状況把握】が行われていても、問題としてとらえない「見過ごし」が生じている可能性がある。注視がなく発話があった場合は、周辺視野機能を働かせ臨床判断の思考段階につなげていると考えられるが、「誤認識」や「誤認識」によって思考を進めて「誤ったケア決定」や、「直感的な誤ったケア決定」を行っている可能性も考えられる。

このように、視覚を用いた観察について思考を働かせることで、臨床判断につなげることが可能となるが、視覚を用いた観察がない状態でも思考を働かせている場合は、周辺視野機能を用いて臨床判断につなげている可能もある。しかし、視覚を用いた観察には「見過ごし」「見落とし」が生じる危険性を含んでいる可能性や、「誤認識」から「ケア決定」につなげる臨床判断が行われている危険性も含まれていることが予想される。

さらに、注視があっても発話が無い場合“暗黙知”のように明確に言葉で表現することなく意識せずに臨床判断の思考段階につなげている場合も考えられるが、「見落とし」が生じている可能性も含んでいる。

注視がなく発話もないものは、観察が行われていない状況を示していると考えられる。

5.2 本研究の限界・今後の課題

眼球運動の分析では、注視時間の长短、注視している人数から眼球運動の傾向を明らかにすることができた。しかし、注視時間の长短、注視している人数にどのような意味があるのかは明らかにすることがない。そのため、視覚による観察時の視線軌跡をきっかけに思考内容を語る発話思考法を用いて模擬患者・模擬病室画像観察時の思考内容について分析を行った。模擬患者・模擬病室画像は20秒（1枚あたり5秒間）と短い観察であったため、発話された内容は短時間のうちに観察した考えた内容となった。そのため、観察内容が意図的に観察したものなのかどうか、観察したことを解釈した根拠となるものは何か、一つの観察内容から考えたことなのか、注視していることを手がかりに、次にどのような観察を行いどのような判断・行動につなげているのか等の検討は行っていない。さらに、観察カテゴリー全てを含めた模擬患者・模擬病室画像の検討であったため、観察カテゴリー別に思考類型の分析を深め観察パターン等を検討する必要がある。
本研究で行ったデータ収集方法の一つである発話思考法による臨床判断の思考過程の内容の適否について言及していない。今後は、発話思考法を用いて語られた思考内容をさらに深めて、観察意図や思考内容の適否を明らかにすることができるインタビュー方法を検討する必要がある。また、臨床経験年数の違いによって観察を必要と考えている領域やその優先順位が異なる可能性があり、分析方法の検討が必要である。

注視している領域が観察内容の発話単位に一致している割合の分析では、注視している領域が思考に反映されたことを示すことができる。しかし、眼球運動計測装置（Talk Eye II）では中心窩でとらえる中心視を示すことはできるものの、中心窩の周辺でとらえる周辺視野による観察を客観的に示することはできない。また、注視している領域に一致している観察内容の発話単位がどのような特徴を持っているかを示す事はできない。今後は、注視している領域を反映した観察内容の発話単位を分析し、どのような特徴があるのかを検討する必要がある。

看護師の臨床実践能力を高めるためには、視覚を用いた観察から思考を働かせ臨床判断につなげることが必要である。本研究で用いた眼球運動計測装置は、実際に注視していた領域の視線軌跡を客観的に示すことができる。さらに、計測した視線軌跡を振り返って確認しながら、観察時の思考内容を語ることで、対象者自身も思考内容を意識化することができる。思考内容を意識化することによって、「見落とし」「見過ごし」「誤認識」のような観察の誤りに自ら気づくことができると考える。

今後、視覚を用いた観察から思考を働かせ臨床判断につなげるための教育方法の一つとして、視覚を用いて観察したことについて何を考え、どのような判断を行うのかという思考内容を意識化できるような教育プログラムを検討する必要がある。

5.3 結論

本研究の結果、模擬患者・模擬病室画像の観察において「総注視時間」、画像毎の「領域別注視時間」「注視の有無」に臨床経験年数が異なる3群に差はなく、臨床経験年数が短い看護師であっても臨床経験年数が長い看護師と同じような眼球運動の傾向があることが示唆された。

また、観察している領域によって注視時間に違いがあり、観察には潜在的注意や周辺視の機能を働かせながら観察が必要な領域を決定している可能性が示唆された。

視覚に基づく臨床判断の思考過程では、【確認・状況把握型】【推論型】【ケア決定型】【直
感的ケア決定型】の 4 つの思考類型に分かれた。思考類型は臨床経験年数によって、1 年目は【確認・状況把握型】にとどまっている傾向にあり、2 年目以上の臨床経験年数の者は［推論］［ケア決定］と思考を進める傾向があり、臨床判断の思考過程には臨床経験年数が影響している可能性がある。

臨床判断時の思考過程にある［推論］には、観察カテゴリーやによって特徴がある。

注視している領域と発話単位は 50%以上が一致しており、視覚を用いて観察した領域について思考をつなげている。臨床経験年数別にみると 10 年目以上の対象者は一致している割合が低いものの、知識や経験など一概的一つ一つの状況を素早く把握したり、周辺視野機能を用いて観察を行っていた可能性が示唆される。臨床経験年数が 1 年目と知識や経験が少ないものは、目の前にある状況を【確認・状況把握】することにとどまり、十分に思考を働かせるまでに至らず“見過ごし”“見落とし”といった観察の誤りにつながる可能性が示唆される。

図 5.1 看護師の視覚に基づく臨床判断の構造
引用文献

阿部幸恵編（2013）：臨床実践力を育てる！ 看護のためのシミュレーション教育（第1版），56，医学書院。

Benner, P., Hooper-Kyriakidis, PL., Stannard, D. （1999）：井上智子訳（2005）：ベナー看護ケアの臨床知 行動しつつ考えること（第1版），562，医学書院，東京。

前掲書，15。

前掲書，109。

前掲書，186。

Benner, P.（1984）井部俊子，井村真澄，上泉和子，他訳（2005）：ベナー看護論—初心者から達人へ，新訳版，17-29，医学書院，東京。

前掲書，26－29。

Corcoran-perry S A., Narayan SM., Cochrane S. （1999）：Coronary care nurses’ clinical decision making, Nursing and Health Sciences, 1（1）, 49-61。

大黒理恵,齋藤やよい（2013）：眼球運動と危険認識から見た看護大学4年生の危険予知の特徴，医学と生物学，157（6），947-954。

江上千代美，田中美智子，近藤美尋ら（2012）：看護現場における看護学生の危険認知と眼球運動，看護人間工学研究誌，12，15-20。

藤内美保, 宮腰由紀子（2008）: 新人看護師の臨床判断プロセスの概念化, 健康歴聴取場面におけるケア決定までの判断, 日本看護研究学会雑誌, 31（5）, 29-37.

福田忠彦研究室 (2009)：第 3 章 第 4 節 EMR-8B による眼球運動分析法, 増補版 人間工学ガイド — 感性を科学する方法—（初版）, 245-278, サイエンティスト社, 東京.

福島邦彦 (2001)：第 4 章 視覚系の神経回路モデル, 飯島泰蔵編, 視聴覚情報処理（第 1 版）, 94-97, 森北出版, 東京.

古庄夏香, 黒田裕子ら（2008）：電子カルテ稼働中の施設における看護師の思考過程の分析, 看護診断, 13 (1), 5-12.

川島みどり（2006）：新訂 看護観察と判断—看護実践の基礎となる患者のみかたとアセスメント（新訂版）, 33-71, 看護の科学社, 東京.

公益財団法人日本医療機能評価機構（編）, 医療事故防止事業部, 医療事故情報収集等事業, 2012年年報.

公益財団法人日本医療機能評価機構（編）, 医療事故防止事業部, 医療事故情報収集等事業, 2013年年報.

河野龍太郎（2009）：医療におけるヒューマンエラー なぜ間違える どう防ぐ（第1版）, 医学書院, 22-27.

厚生統計協会（2010）厚生の指標, 国民衛生の動向, 52-60.

教育機器編集委員会 委員長石川淳二編（1972）：産業教育機器システム便覧（第1版）, 4, 日科技連出版社, 東京.
Lindsay, P.H., & Norman, D.A. (1977a): 中溝幸夫，箱田裕司，近藤倫明訳，（1984）：情報処理心理学入門 I (第 2 版)，8-11, サイエンス社，東京.
中藤義美 (2011): 新人全員参加の指導・支援体制づくり 新人と先輩が「育み、育まれる」関係，看護，63 (11), 47-52.
新潟大学医歯学総合病院看護部,「気づく」を育て伸ばす臨床キャリア開発」プログラム，平成 21 年度文部科学省大学改革推進事業「看護師の人材養成システムの確立」
西方真弓，牧岡諒太，中澤紀代子，他（2012）：看護師の視線運動と観察の意図－新人看護師と臨床経験豊富な看護師との比較－，新潟大学医学部保健学科紀要，10（2），11-21。
西村礼子，大河原知嘉子，大黒理恵（2013）：眼球運動測定器を用いた危険予知教育前後の視覚情報処理機能の変化，医学と生物学，157（5），642-648。
尾形裕子（2012）：状況の把握に焦点をあてた臨床判断の経験3年以上の看護師における臨床判断の特徴，北海道医療大学看護福祉学部学会誌，11-20。
小山田恭子（2009）：我が国の中堅看護師の特性と能力開発手法に関する文献検討，日本看護管理学会誌，13（2），73-80。
Ranieri, Y I., Kho, Taezoon, P., Christopher, D W.（2011）：Differences in attentional strategies by novice and experienced operating theatre scrub nurses, Jounal of Experimental Psychology, 17（3），233-246。
齋藤秀昭（2001）第3章視覚の心理現象と神経活動，飯島泰蔵編（2001）：視聴覚情報処理 基礎情報工学シリーズ（初版），森北出版，34，東京。
坂本すが（2011）：新人看護職員研修の手引き（第1版），66-144，日本看護協会出版会，東京。
佐藤治美，馬場宏俊，下岡正八（2010）：手用スケーラーの選択における歯科衛生士学生の眼球運動，日本歯科保存学雑誌，53（4），384-395。
Schulz-Stubner, S., Jungk, A., Kunitz, O.（2002）：Analysis of the anesthesiologist's vigilance with an eye-tracking device.A pilot study for evaluation of the method under the conditions of a modern operating theatre, Anaesthetist, 51（3），180-186。
瀬川有紀子，石井京子（2010）：中堅看護師の離職意図の要因分析—役割ストレスと役割業務負担感の関連から一，大阪市立大学看護学雑誌，6, 11-18.

新人看護職員研修ガイドライン，2011年2月，厚生労働省，http://www.mhlw.go.jp/stf/houdou/2r985200000128o8-att/2r985200000128vp.pdf。

Tanner, C. A. (2006)：Thinking Like a Nurse： A Research-Based Model of Clinical Judgment in Nursing，Journal of Nursing Education, 45（6），204-211。

渡邊淳子，恵美須文枝（2010）：熟練助産師の分娩期における判断の手がかり，日本助産学会誌，24（1），53-64。

山田光穂，福田忠彦（1986）：画像における注視点の定義と画像分析への応用，電子通信学会論文誌，J69-D（9），1335-1342。

山田三穂，福田忠彦（2004）第9章 画像と眼球運動，苧坂良二，中溝幸夫，古賀一男編（2004）：眼球運動の実験心理学（初版），199-217，名古屋大学出版会，名古屋。

Yan Shen（2010）：Evalution of an eye tracking device to increase error recovery by nursing students using human patient, Submitted to the Graduate School of the University of Massachusetts Amhert in partial fulfillment of the requirements for the degree of Master of science in industrial engineering and operations research。

横澤一彦，大谷智子（2003）：見落とし現象における表象と注意－非注意による見落としと変化の見落とし－，心理学評論，46, 3, 482-500。
謝辞

本研究の遂行、ならびに学位論文の作成にあたり、多くの方のご指導とご協力をいただきました。

石川県立看護大学の丸岡直子教授には、研究遂行ならびに本論文執筆にあたり適切な御指導、御助言を賜り心から感謝の意を表します。時に応じて、厳しくご指導いただいたこと、また優しく励ましてくださったことを通して、私自身の至らなさを実感できたことが多くありました。先生にご指導いただいた時間は私にとって生涯の宝物となります。

石川県立看護大学の小林宏光教授には、研究遂行にあたり御指導いただき深く感謝を申し上げます。

学位論文審査において、貴重な御指導と御助言をいただいた石川県立看護大学の石垣和子教授、同大学 大木秀一教授、同大学 長谷川昇教授に心より感謝を申し上げます。

研究計画にあたり、慶應義塾大学環境情報学部の加藤貴昭准教授から様々なご助言をいただきました。深く感謝を申し上げます。

博士課程在学中、同期の存在が研究をすすめていく上で大きな励みとなり、本論文執筆に向けて精神的な支えになっていた。深く感謝を申し上げます。共に大学院での研究に励んだ皆様にも、この場を借りて厚く御礼申し上げます。

研究に快くご協力くださいました看護師の皆様、各医療施設の看護部長、職員の皆様に心より感謝申し上げます。

研究遂行にあたり模擬患者として快くご協力くださいました地域在住の高齢者様と家族の方々に心より感謝を申し上げます。

また、著者の先輩、後輩、友人、知人など多くの方々からも、気遣いと励ましをいただき、厚く御礼申し上げます。

最後に、私の研究生活をあたりかく見守り応援してくれた両親、弟、親戚の皆様に心から感謝申し上げます。

2015年2月